

EQST insight | 1

Research & Technique

Bypass Vulnerability in Next.js Middleware (CVE-2025-

29927)

■ Introduction

Next.js is an open-source web framework based on Node.js that supports Server-Side Rendering

(SSR)1 and Static Site Generation (SSG)2. The globally popular JavaScript library React mentions

Next.js as a recommended toolchain in its official documentation. An OSINT-based analysis of

publicly available data showed that, as of April 15, 2025, Next.js powers approximately 4.42 million

websites worldwide, including sites in the United States, Russia, and Germany.

Source: fofa.info

Figure 1. Usage Statistics of Next.js

1 SSR (Server-Side Rendering): A web communication method in which the server generates all data and sends it to the client, and the

client interprets that data to render the website.

2 SSG (Static Site Generation): A method in which page HTML is generated at build time and reused for each request.

EQST insight | 2

On March 21, 2025, a vulnerability in Next.js middleware3 bypass, identified as CVE-2025-29927,

was disclosed. This vulnerability arises from the exploitation of Next.js's internal logic, which checks

whether the middleware has already been executed using specific header values. By manipulating

these header values, attackers are capable of circumventing the middleware, and if the

authentication process is implemented through middleware, this bypass enables access to

restricted pages. Given the extensive utilization of Next.js as a web framework, it is imperative to

conduct a thorough examination to determine if one's systems are susceptible to this vulnerability.

3 middleware: concept in the request–response cycle that processes incoming requests before they reach their destination and

processes responses before, they are sent.

EQST insight | 3

■ Attack Scenario

Figure 2. Attack Scenario for CVE-2025-29927

① The attacker scans servers running vulnerable versions of Next.js.

② Exploiting CVE-2025-29927, the attacker bypasses authentication.

③ Bypassing authentication, the attacker accesses the victim’s user management page.

④ From there, the attacker harvests and exfiltrates large volumes of personal data.

EQST insight | 4

■ Affected Software Versions

The software versions vulnerable to CVE-2025-29927 are as follows.
Software Component Vulnerable Version

Next.js

Version prior to v15.2.3

Version prior to v14.2.25

Version prior to v13.5.9

Version prior to v12.3.5

All v11 Version

■ Configuration Information of the Test Environment

A test environment was established to scrutinize the operational process of CVE-2025-29927.
Identifier Details

Victim
Next.js v15.1.7

(192.168.0.3)

Attacker
Kali Linux

(192.168.216.133)

EQST insight | 5

■ Vulnerability Assessment

Step 1. Configuration of the Environment

The victim's PC is configured with the Next.js v15.1.7 environment, and a test environment is

established to replicate the vulnerability. Detailed configuration methods can be accessed in the

GitHub repository provided below.

• URL: https://github.com/EQSTLab/CVE-2025-29927

Clone a GitHub repository

git clone https://github.com/EQSTLab/CVE-2025-29927

Move to the directory, then build and run the Docker image

cd next15

docker build -t nextjs .

docker run -p 3000:3000 --rm -it nextjs

Upon accessing the victim's address via a web browser, one verifies whether the Next.js server is

operating correctly.

Figure 3. Verification of a Vulnerable Next.js Environment Setup

EQST insight | 6

Step 2. Vulnerability Testing

The Next.js server is configured to block unauthorized access to the /admin endpoint.

Figure 4. Blocking Access to the /admin Endpoint

However, the addition of the following headers to the request circumvents the middleware

authentication process.

x-middleware-subrequest: middleware: middleware: middleware: middleware: middleware

When a request containing this header is transmitted, the middleware is treated as having already

been executed, thereby enabling access to the /admin endpoint.

Figure 5. Verification of Middleware Authentication Bypass

EQST insight | 7

■ Detailed Analysis of Vulnerabilities

In the detailed analysis of vulnerabilities, the report methodically elucidates the CVE-2025-29927

vulnerability, from its genesis to the process of authentication circumvention. Step 1 introduces the

concept of middleware in Next.js, along with the characteristics unique to each version. Step 2

describes the vulnerabilities observed in the middleware implementations of each version and

explains the techniques employed to circumvent authentication by exploiting these vulnerabilities.

Step 1. Implementation of Next.js Middleware

1) Characteristics of Next.js Middleware

Middleware acts as an intermediary layer that processes client requests before they reach the

application within the request-response cycle, and is capable of performing additional processing

prior to the transmission of responses. In Next.js, this functionality enables the implementation of

pre-request validation, header rewriting, and redirections, and is defined through either a

middleware.ts or middleware.js file. The middleware file may be positioned alongside the app and

pages folders in the top-level directory of the project, or it can be included within the src directory.

Figure 6. Example of Middleware Placement by File Structure

EQST insight | 8

2) Characteristics of Middleware by Next.js Version

Since version 12.2, Next.js has upgraded and patched its middleware, resulting in significant

changes to the manner in which middleware is utilized.

(1) Versions below 12.2

In versions prior to Next.js v12.2, it was possible to define middleware in any directory. In such

instances, upon receiving a request, the server sequentially executes the middleware, commencing

from the top-level directory and progressing to the subdirectories.

For instance, if middleware is defined in the /pages directory, it is applied to all requests for index.tsx,

about.tsx, and teams.tsx within that directory.

Figure 7. The _middleware file within the /pages directory

Additionally, if middleware is defined in the directories /pages, /pages/about, and

/pages/about/teams, upon receiving a request, the middleware is executed in a hierarchical order

from the upper to the lower levels of the directory structure.

Figure 8. Execution Sequence of Nested Middleware Files

EQST insight | 9

(2) Versions subsequent to v12.2

From version 12.2 of Next.js, the use of underscores (_) in middleware filenames has been

discontinued, and the filenames have been changed to either middleware.ts or middleware.js.

Furthermore, the method of defining middleware in a nested manner within directories is no longer

supported, and only a single middleware file can be placed in a structure parallel to the project root

or the pages directory. As the application of middleware at the directory level becomes untenable,

it is necessary to utilize matcher configurations to apply middleware to specific paths. For instance,

to apply middleware to paths that begin with /admin, one must specify the corresponding pattern

in the matcher as follows.

Figure 9. Example Code for Matcher Configuration

Alternatively, conditional statements can be embedded within the middleware to bifurcate

operations based on the request path. This approach proves particularly beneficial in scenarios

requiring complex conditions that are challenging to manage solely through matcher configurations.

Figure 10. Example Code for Conditional Branching

EQST insight | 10

Step 2. Implementation of Authentication in Next.js Middleware and Methods to Circumvent

by Version

1) Implementation of Authentication Using Middleware

Among the authentication implementation methods provided by Next.js, there is also an approach

that utilizes middleware. For instance, the example below illustrates code that redirects to specific

paths based on user permissions. Such a method proves particularly beneficial in scenarios

requiring swift processing, such as concealing UI elements or controlling access based on

permissions and roles.

Figure 11. Example of Implementing Authentication in Next.js Using Middleware

After implementing authentication through middleware, it can be observed that attempts to access

the /admin endpoint without authentication are subsequently blocked, as demonstrated below.

Figure 12. Verification Process of x-middleware-request

EQST insight | 11

2) Versions below 12.2

Next.js internally utilizes the x-middleware-subrequest header to ascertain whether the middleware

has already been executed for a particular request. This logic, as of version 12.0.1, can be verified

within the /packages/next/server/next-server.ts file. The principal flow of the code is as follows.

Figure 13. x-middleware-request Verification Process

① The values transmitted via the x-middleware-subrequest header are segmented based on the

colon (:) delimiter and are subsequently arrayed.

② Check whether the value of the middlewareInfo.name variable exists in the configured array.

③ If the specified value exists, the NextResponse.next() function is employed to bypass the

middleware, thereby advancing to the subsequent processing stage to receive the response from

the requested path.

At this juncture, the value of the middlewareInfo.name variable is loaded through the

getMiddlewareInfo function located within the /packages/next/server/next-server.ts file. This

function is tasked with retrieving middleware information corresponding to the requested path, and

based on this information, it evaluates whether to execute the middleware by inspecting the x-

middleware-subrequest header.

Figure 14. Retrieving middlewareInfo through getMiddlewareInfo

EQST insight | 12

The getMiddlewareInfo function is implemented in the /packages/next/server/require.ts file and

returns information pertaining to the middleware corresponding to the specified path in the form of

an object.

Figure 15. Invocation of MIDDLEWARE_MANIFEST within getMiddlewareInfo

This logic references the .next/server/middleware-manifest.json file located within the .next

directory generated subsequent to the build of Next.js, thereby importing the middleware

information.

Figure 16. Information on middleware name within middleware-manifest.json

EQST insight | 13

The "name" key in the middleware-manifest.json file denotes the location path of each middleware.

Consequently, the middlewareInfo.name value ultimately becomes pages/_middleware. This is

consistently verified when checked through debugging tools during execution.

Figure 17. The Value of middlewareInfo.name as Verified through the Debugger

Thus, when the x-middleware-subrequest header value is set to pages/_middleware, the request is

treated as having already passed through the middleware. Consequently, the middleware does not

execute, and the authentication procedures implemented within can be bypassed, resulting in a

vulnerability.

Figure 18. Verification of Middleware Authentication Process Bypass

As elucidated in Step 1, versions prior to v12.2 permit the individual definition of middleware for

each directory. In such instances, by entering the path of each middleware defined under the

'pages' directory into the x-middleware-subrequest header value, it becomes feasible to circumvent

the authentication process. For instance, as demonstrated in Figure 8, specifying either

pages/about/_middleware or pages/about/teams/_middleware in the header enables the bypassing

of the respective middleware.

EQST insight | 14

3) Versions above 12.2 and below 14.2

The logic pertaining to x-middleware-subrequest has remained unaltered; consequently, as was

the case previously, setting the middleware path in this header still facilitates the bypassing of

authentication. From version 12.2 onwards, the naming convention for middleware files has been

modified to either middleware.ts or middleware.js, and their location has been standardized to a

directory parallel to, rather than inside, the pages directory. Thus, the middleware path has

transitioned from the former pages/_middleware to simply middleware.

Such modifications can be observed in the .next/server/middleware-manifest.json file, through

which it is discernible that the path of the middleware has been altered from pages/_middleware to

middleware.

Figure 19. Information on middleware name within middleware-manifest.json

Similarly to the case of Next.js v12.2 mentioned above, by inspecting the values in execution

through the debugger, it can be ascertained that the value in question is indeed middleware.

Figure 20. The Value of middlewareInfo.name as Verified through the Debugger

EQST insight | 15

Similarly, by setting the value of the x-middleware-subrequest header to middleware, it is possible

to circumvent the authentication process.

Figure 21. Verification of Bypassing the Middleware Authentication Process

EQST insight | 16

4) Versions subsequent to v14.2

From version 14.2 of Next.js, the code has been modified such that if the value in the x-middleware-

subrequest header of the middleware includes a middleware path that repeats beyond a certain

number of times based on a colon (:), the request is engineered to bypass the middleware.

This can be verified through the code in /packages/next/src/server/web/sandbox/sandbox.ts.

Figure 22. Modified x-middleware-request Verification Process

① The values transmitted via the x-middleware-subrequest header are segmented based on the

colon (:) delimiter and subsequently structured into an array.

② The configured array is scrutinized to ascertain the number of occurrences of the value of the

variable params.name.

③ If the value of the variable params.name is repeated more than five times, the middleware is

bypassed, and the response from the requested path is received.

EQST insight | 17

In this context, params.name corresponds to the previously mentioned middleware.name, a

congruence verifiable through the .next/server/middleware-manifest.json file and subsequent

debugging.

Figure 23. Information on middleware name within middleware-manifest.json

Figure 24. The Value of params.name as Verified Through the Debugger

EQST insight | 18

Consequently, subsequent to version 14.2, it is requisite that the middleware path be reiterated no

fewer than five times, delineated by colons (:), as in

middleware:middleware:middleware:middleware:middleware. By entering such a value into the x-

middleware-subrequest header, one can circumvent the middleware verification process.

Figure 25. Verification of Bypassing the Middleware Authentication Process

5) Version-specific Middleware Evasion Payloads

As illustrated in Figure 6, the middleware may be situated within the src directory. Consequently,

the middleware bypass payload that can be entered via the x-middleware-subrequest header

value varies depending on the version as follows.

Version Bypass Payload Example

 version < v12.2 pages/[SubDirectory]/_middleware or ages/[subdirectory]/_middleware

v12.2 ≤ version < v14.2 middleware or src/middleware

version ≥ v14.2
middleware:middleware:middleware:middleware:middleware or

src/middleware:src/middleware:src/middleware:src/middleware:src/middleware

EQST insight | 19

■ Response Measures

The vulnerability CVE-2025-29927, which pertains to the bypassing of authentication in Next.js

middleware, was identified by researchers zhero; and inzo_. It was initially reported on February 27,

2025.

•URL:https://zhero-web-sec.github.io/research-and-things/nextjs-and-the-corrupt-

middleware#section-7

The vulnerability in question was patched on March 18, 2025, and the corresponding security

advisory was made public on March 21, 2025.

•URL: https://github.com/vercel/next.js/security/advisories/GHSA-f82v-jwr5-mffw

Upon examining the patch notes for version 15.2.3, one can ascertain the specific security measures

that have been implemented.

•URL: https://github.com/vercel/next.js/compare/v15.2.2...v15.2.3

Initially, in packages/next/src/server/lib/router-server.ts, the function crypto. getRandomValues is

utilized to generate an 8-byte random value. Subsequently, this value is stored as a global variable4

for the @next/middleware-subrequest-id.

Figure 26. Modifications to packages/next/src/server/lib/router-server.ts

4 global variable: A variable declared outside of a function that can be accessed from anywhere in the program.

EQST insight | 20

Subsequently, the verification process implemented in packages/next/src/server/lib/server-

ipc/utils.ts ascertains the presence of the x-middleware-subrequest and x-middleware-

subrequest-id headers. It further scrutinizes whether the value of the x-middleware-subrequest-id

header corresponds with the @next/middleware-subrequest-id stored previously in a global

variable. Should there be a discrepancy in the values, the x-middleware-subrequest header is

expunged to preclude its utilization.

Figure 27. Modifications to packages/next/src/server/lib/server-ipc/utils.ts

Users are incapable of predicting the 8-byte random values stored internally; consequently, the

server side can securely utilize the x-middleware-subrequest header to ascertain whether

execution within the middleware is taking place.

The determination of whether vulnerable versions are in use can be ascertained by examining the

package.json file within the source code. Versions below 15.2.3, 14.2.25, 13.5.9, 12.3.5, and all 11.x

versions are susceptible to vulnerabilities. Consequently, it is imperative to apply patches to these

versions if they are in use, to prevent the exploitation of x-middleware-subrequest by malicious

actors.

EQST insight | 21

Figure 28. Example of Using a Vulnerable Next.js Version

It should be noted that version 11.x is no longer supported, rendering patching unfeasible; thus,

migration to the continuously supported version 15 is recommended. Should patching to a secure

version prove challenging, it is advisable to block external user requests that include the x-

middleware-subrequest header from reaching the Next.js application.

EQST insight | 22

■ Reference Sites

• Wikipedia (Next.js) : https://en.wikipedia.org/wiki/Next.js

• Wikipedia (Static web page) : https://en.wikipedia.org/wiki/Static_web_page

• Wikipedia (Server-side rendering) : https://en.wikipedia.org/wiki/Server-side_scripting

• Project structure and organization (Next.js docs) : https://nextjs.org/docs/app/getting-

started/project-structure

• middleware (Next.js docs) : https://nextjs.org/docs/app/building-your-

application/routing/middleware

• Next.js and the corrupt middleware: the authorizing artifact (zhero_web_security) :

https://zhero-web-sec.github.io/research-and-things/nextjs-and-the-corrupt-middleware

• Authorization Bypass in Next.js Middleware (GitHub Security Advisory) :

https://github.com/vercel/next.js/security/advisories/GHSA-f82v-jwr5-mffw

